Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Struct Biol ; 86: 102822, 2024 06.
Article in English | MEDLINE | ID: mdl-38685162

ABSTRACT

Protein-protein interactions (PPIs) play a critical role in cellular signaling and represent interesting targets for therapeutic intervention. 14-3-3 proteins integrate many signaling targets via PPIs and are frequently implicated in disease, making them intriguing drug targets. Here, we review the recent advances in the 14-3-3 field. It will discuss the roles 14-3-3 proteins play within the cell, elucidation of their expansive interactome, and the complex mechanisms that underpin their function. In addition, the review will discuss significant advances in the development of molecular glues that target 14-3-3 PPIs. In particular, it will focus on novel drug discovery and development methodologies that have delivered selective, potent, and drug-like molecules that could open new avenues for the development of precision molecular tools and medicines.


Subject(s)
14-3-3 Proteins , Protein Interaction Maps , 14-3-3 Proteins/metabolism , Humans , Protein Binding , Drug Discovery , Signal Transduction , Animals , Protein Interaction Mapping/methods
2.
Nat Prod Res ; 37(13): 2279-2284, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35073791

ABSTRACT

Structural modifications are an important tool for studying the properties of naturally occurring polyphenols. Regarding the preparation of acetyl esters, the presence of hydroxyl groups stabilized by intramolecular hydrogen bonds may pose an obstacle for the peracetylation of these compounds. In this paper, we present a facile protocol for the acetylation of selected polyphenols under mild reaction conditions by using acetic anhydride, catalytic amount 4-dimethylaminopyridine (DMAP) and dimethylformamide (DMF) as solvent. Reaction conditions were adjusted for optimal formation of peracetylated polyphenols while minimizing the formation of byproducts. Butyric anhydride was employed as an alternative acylating agent and showed similar results. Reaction yields varied from 78-97%, and products were obtained in high purity, as determined by LCMS(ESI+), 1H NMR and 13C NMR.


Subject(s)
Anhydrides , Acetylation , Magnetic Resonance Spectroscopy , Catalysis , Solvents
3.
Trop Med Infect Dis ; 7(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36548658

ABSTRACT

Cancer and parasitic diseases, such as leishmaniasis and Chagas disease, share similarities that allow the co-development of new antiproliferative agents as a strategy to quickly track the discovery of new drugs. This strategy is especially interesting regarding tropical neglected diseases, for which chemotherapeutic alternatives are extremely outdated. We designed a series of (E)-3-aryl-5-(2-aryl-vinyl)-1,2,4-oxadiazoles based on the reported antiparasitic and anticancer activities of structurally related compounds. The synthesis of such compounds led to the development of a new, fast, and efficient strategy for the construction of a 1,2,4-oxadiazole ring on a silica-supported system under microwave irradiation. One hit compound (23) was identified during the in vitro evaluation against drug-sensitive and drug-resistant chronic myeloid leukemia cell lines (EC50 values ranging from 5.5 to 13.2 µM), Trypanosoma cruzi amastigotes (EC50 = 2.9 µM) and Leishmania amazonensis promastigotes (EC50 = 12.2 µM) and amastigotes (EC50 = 13.5 µM). In silico studies indicate a correlation between the in vitro activity and the interaction with tubulin at the colchicine binding site. Furthermore, ADMET in silico predictions indicate that the compounds possess a high druggability potential due to their physicochemical, pharmacokinetic, and toxicity profiles, and for hit 23, it was identified by multiple spectroscopic approaches that this compound binds with human serum albumin (HSA) via a spontaneous ground-state association with a moderate affinity driven by entropically and enthalpically energies into subdomain IIA (site I) without significantly perturbing the secondary content of the protein.

4.
J Enzyme Inhib Med Chem ; 34(1): 631-637, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30727776

ABSTRACT

A series of 3-substituted-7-aminoalcoxy-coumarin was designed and evaluated as cholinesterase inhibitors and antioxidants. All compounds were effective in inhibiting AChE with potencies in the nanomolar range. The 3-(4-(dimethylamino)phenyl)-7-aminoethoxy-coumarin (6a) was considered a hit, showing good AChE inhibition potency (IC50 = 20 nM) and selectivity (IC50 BuChE/AChE = 354), quite similar to the reference drug donepezil (IC50 = 6 nM; IC50 BuChE/AChE = 365), also presenting antioxidant properties, low citotoxicity and good-predicted ADMET properties. The mode of action (mixed-type) and SAR analysis for this series of compounds were described by means of kinetic and molecular modeling evaluations.


Subject(s)
Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Coumarins/pharmacology , Drug Discovery , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Survival/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Coumarins/chemical synthesis , Coumarins/chemistry , Dose-Response Relationship, Drug , Electrophorus , Horses , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...