Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 126(3): 353-61, 2003.
Article in English | MEDLINE | ID: mdl-12963296

ABSTRACT

Increased deposition of atmospheric N largely from intensive agriculture is affecting biodiversity and the composition of natural and semi-natural vegetation in Europe. The value of species based bioindicators such as the Ellenberg N index and measurements of total tissue N and free amino acids in key plant species, is described with reference to a mixed woodland downwind of a livestock farm in the Scottish Borders, operated for over 20 years with a measured spatial gradient of ammonia concentration (29-1.5 microg m(-3)). All the indicators examined showed a relationship with N deposition and provided some indication of vegetation change. Total tissue N and arginine concentrations were most closely linked with ammonia concentrations and N deposition, with r(2) values of >0.97 and >0.78 respectively.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Nitrogen/analysis , Plant Leaves/chemistry , Trees , Amino Acids/analysis , Ammonia/analysis , Animals , Animals, Domestic , Ecosystem , Poultry , Time Factors
2.
Environ Pollut ; 119(1): 9-21, 2002.
Article in English | MEDLINE | ID: mdl-12125733

ABSTRACT

The marker variables, Ellenberg Nitrogen Index, nitrous oxide and nitric oxide fluxes and foliar nitrogen, were used to define the impacts of NH3 deposition from nearby livestock buildings on species composition of woodland ground flora, using a woodland site close to a major poultry complex in the UK. The study centred on 2 units in close proximity to each other, containing 350,000 birds, and estimated to emit around 140,000 kg N year(-1) as NH3. Annual mean concentrations of NH3 close to the buildings were very large (60 microg m(-3)) and declined to 3 microg m(-3) at a distance of 650 m from the buildings. Estimated total N deposition ranged from 80 kg N ha(-1) year(-1) at a distance of 30 m to 14 kg N ha(-1) year(-1) at 650 m downwind. Emissions of N2O and NO were 56 and 131 microg N m(-2) h(-1), respectively at 30 m and 13 and 80 microg N m(-2) h(-1), respectively at 250 m downwind of the livestock buildings. Species number in woodland ground flora downwind of the buildings remained fairly constant for a distance of 200 m from the units then increased considerably, doubling at a distance of 650 m. Within the first 200 m downwind, trends in plant species composition were hard to discern because of variations in tree canopy composition and cover. The mean Ellenberg N Index ranged from 6.0 immediately downwind of the livestock buildings to 4.8 at 650 m downwind. The mean abundance weighted Ellenberg N Index also declined with distance from the buildings. Tissue N concentrations in trees, herbs and mosses were all large, reflecting the substantial ammonia emissions at this site. Tissue N content of ectohydric mosses ranged from approximately 4% at 30 m downwind to 1.6% at 650 m downwind. An assessment of the relative merits of the three marker variables concludes, that while Ellenberg Index and trace gas fluxes of N2O and NO give broad indications of impacts of ammonia emissions on woodland vegetation, the application of a critical foliar N content for ectohydric mosses is the most useful method for providing spatial information which could be of value to policy developers and planners.


Subject(s)
Agriculture , Ammonia/adverse effects , Nitric Oxide/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Trees , Ammonia/analysis , Animals , Bryopsida/chemistry , Free Radical Scavengers/analysis , Plant Leaves/chemistry , Poultry
SELECTION OF CITATIONS
SEARCH DETAIL
...