Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Brain ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753057

ABSTRACT

Deubiquitination is critical for the proper functioning of numerous biological pathways such as DNA repair, cell cycle progression, transcription, signal transduction, and autophagy. Accordingly, pathogenic variants in deubiquitinating enzymes (DUBs) have been implicated in neurodevelopmental disorders (ND) and congenital abnormalities. ATXN7L3 is a component of the DUB module of the SAGA complex, and two other related DUB modules, and serves as an obligate adaptor protein of 3 ubiquitin-specific proteases (USP22, USP27X or USP51). Through exome sequencing and GeneMatching, we identified nine individuals with heterozygous variants in ATXN7L3. The core phenotype included global motor and language developmental delay, hypotonia, and distinctive facial characteristics including hypertelorism, epicanthal folds, blepharoptosis, a small nose and mouth, and low-set posteriorly rotated ears. In order to assess pathogenicity, we investigated the effects of a recurrent nonsense variant [c.340C>T; p.(Arg114Ter)] in fibroblasts of an affected individual. ATXN7L3 protein levels were reduced, and deubiquitylation was impaired, as indicated by an increase in histone H2Bub1 levels. This is consistent with the previous observation of increased H2Bub1 levels in Atxn7l3-null mouse embryos, which have developmental delay and embryonic lethality. In conclusion, we present clinical information and biochemical characterization supporting ATXN7L3 variants in the pathogenesis of a rare syndromic ND.

2.
Cell Genom ; 4(2): 100483, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38359786

ABSTRACT

The MRC National Mouse Genetics Network (NMGN) has been established in the UK to bring together researchers from academia and industry across the country from a wide range of disease areas and research backgrounds to rapidly facilitate clinical translation of mouse research findings and foster an environment of interdisciplinary learning.


Subject(s)
Industry , Animals , Mice
3.
Eur J Neurol ; 31(5): e16216, 2024 May.
Article in English | MEDLINE | ID: mdl-38247216

ABSTRACT

BACKGROUND AND PURPOSE: Identifying vestibular causes of dizziness and unsteadiness in multi-sensory neurological disease can be challenging, with problems typically attributed to central or peripheral nerve involvement. Acknowledging vestibular dysfunction as part of the presentation provides an opportunity to access targeted vestibular rehabilitation, for which extensive evidence exists. A diagnostic framework was developed and validated to detect vestibular dysfunction, benign paroxysmal positional vertigo or vestibular migraine. The specificity and sensitivity of the diagnostic framework was tested in patients with primary mitochondrial disease. METHODS: Adults with a confirmed diagnosis of primary mitochondrial disease were consented, between September 2020 and February 2022. Participants with and without dizziness or unsteadiness underwent remote physiotherapy assessment and had in-person detailed neuro-otological assessment. The six framework question responses were compared against objective neuro-otological assessment or medical notes. The output was binary, with sensitivity and specificity calculated. RESULTS: Seventy-four adults completed the study: age range 20-81 years (mean 48 years, ±SD 15.05 years); ratio 2:1 female to male. The framework identified a vestibular diagnosis in 35 participants, with seven having two diagnoses. The framework was able to identify vestibular diagnoses in adults with primary mitochondrial disease, with a moderate (40-59) to very high (90-100) sensitivity and positive predictive value, and moderate to high (60-74) to very high (90-100) specificity and negative predictive value. CONCLUSIONS: Overall, the clinical framework identified common vestibular diagnoses with a moderate to very high specificity and sensitivity. This presents an opportunity for patients to access effective treatment in a timely manner, to reduce falls and improve quality of life.


Subject(s)
Migraine Disorders , Mitochondrial Diseases , Vestibular Diseases , Adult , Humans , Male , Female , Young Adult , Middle Aged , Aged , Aged, 80 and over , Dizziness/diagnosis , Dizziness/etiology , Quality of Life , Vertigo/diagnosis , Vertigo/complications , Migraine Disorders/diagnosis , Migraine Disorders/complications , Mitochondrial Diseases/complications , Mitochondrial Diseases/diagnosis , Vestibular Diseases/diagnosis , Vestibular Diseases/complications , Benign Paroxysmal Positional Vertigo/complications
4.
Expert Rev Mol Diagn ; 23(9): 797-814, 2023.
Article in English | MEDLINE | ID: mdl-37642407

ABSTRACT

INTRODUCTION: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.


Mitochondria generate our bodies' energy, and they contain their own circular DNA molecules. Changes in this mitochondrial DNA can cause a wide range of genetic diseases. Improved computer processing of the sequence of this DNA and new techniques that can read the full DNA sequence in one experiment may enhance our ability to understand these genetic variants.


Subject(s)
Genome, Mitochondrial , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Sequence Analysis, DNA/methods , Computational Biology , High-Throughput Nucleotide Sequencing/methods
5.
Neurology ; 101(3): e238-e252, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37268435

ABSTRACT

BACKGROUND AND OBJECTIVES: Primary mitochondrial myopathies (PMMs) encompass a group of genetic disorders that impair mitochondrial oxidative phosphorylation, adversely affecting physical function, exercise capacity, and quality of life (QoL). Current PMM standards of care address symptoms, with limited clinical impact, constituting a significant therapeutic unmet need. We present data from MMPOWER-3, a pivotal, phase-3, randomized, double-blind, placebo-controlled clinical trial that evaluated the efficacy and safety of elamipretide in participants with genetically confirmed PMM. METHODS: After screening, eligible participants were randomized 1:1 to receive either 24 weeks of elamipretide at a dose of 40 mg/d or placebo subcutaneously. Primary efficacy endpoints included change from baseline to week 24 on the distance walked on the 6-minute walk test (6MWT) and total fatigue on the Primary Mitochondrial Myopathy Symptom Assessment (PMMSA). Secondary endpoints included most bothersome symptom score on the PMMSA, NeuroQoL Fatigue Short-Form scores, and the patient global impression and clinician global impression of PMM symptoms. RESULTS: Participants (N = 218) were randomized (n = 109 elamipretide; n = 109 placebo). The m0ean age was 45.6 years (64% women; 94% White). Most of the participants (n = 162 [74%]) had mitochondrial DNA (mtDNA) alteration, with the remainder having nuclear DNA (nDNA) defects. At screening, the most frequent bothersome PMM symptom on the PMMSA was tiredness during activities (28.9%). At baseline, the mean distance walked on the 6MWT was 336.7 ± 81.2 meters, the mean score for total fatigue on the PMMSA was 10.6 ± 2.5, and the mean T score for the Neuro-QoL Fatigue Short-Form was 54.7 ± 7.5. The study did not meet its primary endpoints assessing changes in the 6MWT and PMMSA total fatigue score (TFS). Between the participants receiving elamipretide and those receiving placebo, the difference in the least squares mean (SE) from baseline to week 24 on distance walked on the 6MWT was -3.2 (95% CI -18.7 to 12.3; p = 0.69) meters, and on the PMMSA, the total fatigue score was -0.07 (95% CI -0.10 to 0.26; p = 0.37). Elamipretide treatment was well-tolerated with most adverse events being mild to moderate in severity. DISCUSSION: Subcutaneous elamipretide treatment did not improve outcomes in the 6MWT and PMMSA TFS in patients with PMM. However, this phase-3 study demonstrated that subcutaneous elamipretide is well-tolerated. TRIAL REGISTRATION INFORMATION: Trial registered with clinicaltrials.gov, Clinical Trials Identifier: NCT03323749; submitted on October 12, 2017; first patient enrolled October 9, 2017. CLINICALTRIALS: gov/ct2/show/NCT03323749?term = elamipretide&draw = 2&rank = 9. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that elamipretide does not improve the 6MWT or fatigue at 24 weeks compared with placebo in patients with primary mitochondrial myopathy.


Subject(s)
Mitochondrial Myopathies , Quality of Life , Humans , Female , Middle Aged , Male , Merozoite Surface Protein 1/therapeutic use , Mitochondrial Myopathies/drug therapy , Fatigue , Double-Blind Method , Treatment Outcome
6.
J Med Ethics ; 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37339848

ABSTRACT

We discuss a case where clinical genomic investigation of muscle weakness unexpectedly found a genetic variant that might (or might not) predispose to kidney cancer. We argue that despite its off-target and uncertain nature, this variant should be discussed with the man who had the test, not because it is medical information, but because this discussion would allow the further clinical evaluation that might lead it to becoming so. We argue that while prominent ethical debates around genomics often take 'results' as a starting point and ask questions as to whether to look for and how to react to them, the construction of genomic results is fraught with ethical complexity, although often couched as a primarily technical problem. We highlight the need for greater focus on, and appreciation of, the ethical work undertaken daily by scientists and clinicians working in genomic medicine and discuss how public conversations around genomics need to adapt to prepare future patients for potentially uncertain and unexpected outcomes from clinical genomic tests.

8.
Handb Clin Neurol ; 194: 9-21, 2023.
Article in English | MEDLINE | ID: mdl-36813323

ABSTRACT

Progressive external ophthalmoplegia (PEO), characterized by ptosis and impaired eye movements, is a clinical syndrome with an expanding number of etiologically distinct subtypes. Advances in molecular genetics have revealed numerous pathogenic causes of PEO, originally heralded in 1988 by the detection of single large-scale deletions of mitochondrial DNA (mtDNA) in skeletal muscle of people with PEO and Kearns-Sayre syndrome. Since then, multiple point variants of mtDNA and nuclear genes have been identified to cause mitochondrial PEO and PEO-plus syndromes, including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and sensory ataxic neuropathy dysarthria ophthalmoplegia (SANDO). Intriguingly, many of those nuclear DNA pathogenic variants impair maintenance of the mitochondrial genome causing downstream mtDNA multiple deletions and depletion. In addition, numerous genetic causes of nonmitochondrial PEO have been identified.


Subject(s)
Ophthalmoplegia, Chronic Progressive External , Ophthalmoplegia , Humans , Ophthalmoplegia, Chronic Progressive External/complications , Ophthalmoplegia, Chronic Progressive External/genetics , Ophthalmoplegia, Chronic Progressive External/pathology , DNA, Mitochondrial/genetics , Ophthalmoplegia/genetics , Ophthalmoplegia/pathology , Muscle, Skeletal/pathology , Syndrome
10.
Eur J Neurol ; 30(2): 399-412, 2023 02.
Article in English | MEDLINE | ID: mdl-36303290

ABSTRACT

BACKGROUND AND PURPOSE: Clinical outcome information on patients with neuromuscular diseases (NMDs) who have been infected with SARS-CoV-2 is limited. The aim of this study was to determine factors associated with the severity of COVID-19 outcomes in people with NMDs. METHODS: Cases of NMD, of any age, and confirmed/presumptive COVID-19, submitted to the International Neuromuscular COVID-19 Registry up to 31 December 2021, were included. A mutually exclusive ordinal COVID-19 severity scale was defined as follows: (1) no hospitalization; (2) hospitalization without oxygenation; (3) hospitalization with ventilation/oxygenation; and (4) death. Multivariable ordinal logistic regression analyses were used to estimate odds ratios (ORs) for severe outcome, adjusting for age, sex, race/ethnicity, NMD, comorbidities, baseline functional status (modified Rankin scale [mRS]), use of immunosuppressive/immunomodulatory medication, and pandemic calendar period. RESULTS: Of 315 patients from 13 countries (mean age 50.3 [±17.7] years, 154 [48.9%] female), 175 (55.5%) were not hospitalized, 27 (8.6%) were hospitalized without supplemental oxygen, 91 (28.9%) were hospitalized with ventilation/supplemental oxygen, and 22 (7%) died. Higher odds of severe COVID-19 outcomes were observed for: age ≥50 years (50-64 years: OR 2.4, 95% confidence interval [CI] 1.33-4.31; >64 years: OR 4.16, 95% CI 2.12-8.15; both vs. <50 years); non-White race/ethnicity (OR 1.81, 95% CI 1.07-3.06; vs. White); mRS moderately severe/severe disability (OR 3.02, 95% CI 1.6-5.69; vs. no/slight/moderate disability); history of respiratory dysfunction (OR 3.16, 95% CI 1.79-5.58); obesity (OR 2.24, 95% CI 1.18-4.25); ≥3 comorbidities (OR 3.2, 95% CI 1.76-5.83; vs. ≤2; if comorbidity count used instead of specific comorbidities); glucocorticoid treatment (OR 2.33, 95% CI 1.14-4.78); and Guillain-Barré syndrome (OR 3.1, 95% CI 1.35-7.13; vs. mitochondrial disease). CONCLUSIONS: Among people with NMDs, there is a differential risk of COVID-19 outcomes according to demographic and clinical characteristics. These findings could be used to develop tailored management strategies and evidence-based recommendations for NMD patients.


Subject(s)
COVID-19 , Neuromuscular Diseases , Humans , Female , Middle Aged , Male , SARS-CoV-2 , Neuromuscular Diseases/epidemiology , Registries , Oxygen
11.
Nat Commun ; 13(1): 6324, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344503

ABSTRACT

Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk .


Subject(s)
Genome , Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Phenotype
12.
J Am Coll Cardiol ; 80(15): 1421-1430, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36202532

ABSTRACT

BACKGROUND: Patients with mitochondrial diseases are at risk of heart failure (HF) and arrhythmic major adverse cardiac events (MACE). OBJECTIVES: We developed prediction models to estimate the risk of HF and arrhythmic MACE in this population. METHODS: We determined the incidence and searched for predictors of HF and arrhythmic MACE using Cox regression in 600 adult patients from a multicenter registry with genetically confirmed mitochondrial diseases. RESULTS: Over a median follow-up time of 6.67 years, 29 patients (4.9%) reached the HF endpoint, including 19 hospitalizations for nonterminal HF, 2 cardiac transplantations, and 8 deaths from HF. Thirty others (5.1%) reached the arrhythmic MACE, including 21 with third-degree or type II second-degree atrioventricular blocks, 4 with sinus node dysfunction, and 5 sudden cardiac deaths. Predictors of HF were the m.3243A>G variant (HR: 4.3; 95% CI: 1.8-10.1), conduction defects (HR: 3.0; 95% CI: 1.3-6.9), left ventricular (LV) hypertrophy (HR: 2.6; 95% CI: 1.1-5.8), LV ejection fraction <50% (HR: 10.2; 95% CI: 4.6-22.3), and premature ventricular beats (HR: 4.1; 95% CI: 1.7-9.9). Independent predictors for arrhythmia were single, large-scale mtDNA deletions (HR: 4.3; 95% CI: 1.7-10.4), conduction defects (HR: 6.8; 95% CI: 3.0-15.4), and LV ejection fraction <50% (HR: 2.7; 95% CI: 1.1-7.1). C-indexes of the Cox regression models were 0.91 (95% CI: 0.88-0.95) and 0.80 (95% CI: 0.70-0.90) for the HF and arrhythmic MACE, respectively. CONCLUSIONS: We developed the first prediction models for HF and arrhythmic MACE in patients with mitochondrial diseases using genetic variant type and simple cardiac assessments.


Subject(s)
Heart Failure , Mitochondrial Diseases , Adult , DNA, Mitochondrial/genetics , Heart , Heart Failure/epidemiology , Humans , Hypertrophy, Left Ventricular , Mitochondrial Diseases/complications , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Prognosis , Risk Factors , Stroke Volume , Ventricular Function, Left
13.
Article in English | MEDLINE | ID: mdl-36254116

ABSTRACT

Orphan drug development is a rapidly expanding field. Nevertheless, clinical trials for rare diseases can present inherent challenges. Optimal study design and partnerships between academia and industry are therefore required for the successful development, delivery and clinical approval of effective therapies in this group of disorders.

14.
Nat Rev Neurol ; 18(11): 689-698, 2022 11.
Article in English | MEDLINE | ID: mdl-36257993

ABSTRACT

The variable clinical and biochemical manifestations of primary mitochondrial diseases (PMDs), and the complexity of mitochondrial genetics, have proven to be a substantial barrier to the development of effective disease-modifying therapies. Encouraging data from gene therapy trials in patients with Leber hereditary optic neuropathy and advances in DNA editing techniques have raised expectations that successful clinical transition of genetic therapies for PMDs is feasible. However, obstacles to the clinical application of genetic therapies in PMDs remain; the development of innovative, safe and effective genome editing technologies and vectors will be crucial to their future success and clinical approval. In this Perspective, we review progress towards the genetic treatment of nuclear and mitochondrial DNA-related PMDs. We discuss advances in mitochondrial DNA editing technologies alongside the unique challenges to targeting mitochondrial genomes. Last, we consider ongoing trials and regulatory requirements.


Subject(s)
Mitochondrial Diseases , Optic Atrophy, Hereditary, Leber , Humans , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy , DNA, Mitochondrial/genetics , Mitochondria/genetics , Genetic Therapy
15.
Cell Metab ; 34(11): 1792-1808.e6, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36198313

ABSTRACT

The structural and functional organization of the mitochondrial respiratory chain (MRC) remains intensely debated. Here, we show the co-existence of two separate MRC organizations in human cells and postmitotic tissues, C-MRC and S-MRC, defined by the preferential expression of three COX7A subunit isoforms, COX7A1/2 and SCAFI (COX7A2L). COX7A isoforms promote the functional reorganization of distinct co-existing MRC structures to prevent metabolic exhaustion and MRC deficiency. Notably, prevalence of each MRC organization is reversibly regulated by the activation state of the pyruvate dehydrogenase complex (PDC). Under oxidative conditions, the C-MRC is bioenergetically more efficient, whereas the S-MRC preferentially maintains oxidative phosphorylation (OXPHOS) upon metabolic rewiring toward glycolysis. We show a link between the metabolic signatures converging at the PDC and the structural and functional organization of the MRC, challenging the widespread notion of the MRC as a single functional unit and concluding that its structural heterogeneity warrants optimal adaptation to metabolic function.


Subject(s)
Glycolysis , Oxidative Phosphorylation , Humans , Electron Transport , Mitochondrial Membranes/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Protein Isoforms/metabolism
16.
J Clin Endocrinol Metab ; 107(12): 3328-3340, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36074910

ABSTRACT

CONTEXT: Premature ovarian insufficiency (POI) is a common form of female infertility that usually presents as an isolated condition but can be part of various genetic syndromes. Early diagnosis and treatment of POI can minimize comorbidity and improve health outcomes. OBJECTIVE: We aimed to determine the genetic cause of syndromic POI, intellectual disability, neutropenia, and cataracts. METHODS: We performed whole-exome sequencing (WES) followed by functional validation via RT-PCR, RNAseq, and quantitative proteomics, as well as clinical update of previously reported patients with variants in the caseinolytic peptidase B (CLPB) gene. RESULTS: We identified causative variants in CLPB, encoding a mitochondrial disaggregase. Variants in this gene are known to cause an autosomal recessive syndrome involving 3-methylglutaconic aciduria, neurological dysfunction, cataracts, and neutropenia that is often fatal in childhood; however, there is likely a reporting bias toward severe cases. Using RNAseq and quantitative proteomics we validated causation and gained insight into genotype:phenotype correlation. Clinical follow-up of patients with CLPB deficiency who survived to adulthood identified POI and infertility as a common postpubertal ailment. CONCLUSION: A novel splicing variant is associated with CLPB deficiency in an individual who survived to adulthood. POI is a common feature of postpubertal female individuals with CLPB deficiency. Patients with CLPB deficiency should be referred to pediatric gynecologists/endocrinologists for prompt POI diagnosis and hormone replacement therapy to minimize associated comorbidities.


Subject(s)
Cataract , Menopause, Premature , Neutropenia , Primary Ovarian Insufficiency , Female , Humans , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Transcriptome , Proteomics , Primary Ovarian Insufficiency/genetics , Phenotype , Cataract/genetics
17.
Neurology ; 98(14): 576-582, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35190464

ABSTRACT

BACKGROUND AND OBJECTIVES: To identify factors associated with severe coronavirus disease 2019 (COVID-19), defined by hospitalization status, in patients with primary mitochondrial diseases (PMDs), thereby enabling future risk stratification and informed management decisions. METHODS: We undertook a cross-sectional, international, registry-based study. Data were extracted from the International Neuromuscular COVID-19 Database and collected between May 1, 2020, and May 31, 2021. The database included subjects with (1) PMD diagnosis (any age), clinically/histopathologically suspected and/or genetically confirmed; and (2) COVID-19 diagnosis classified as "confirmed", "probable", or "suspected" based on World Health Organization definitions. The primary outcome was hospitalization because of COVID-19. We collected demographic information, smoking status, coexisting comorbidities, outcomes after COVID-19 infection, and PMD genotype-phenotype. Baseline status was assessed using the modified Rankin scale (mRS) and the Newcastle Mitochondrial Disease Adult Scale (NMDAS). RESULTS: Seventy-nine subjects with PMDs from 10 countries were included (mean age 41.5 ± 18 years): 25 (32%) were hospitalized, 48 (61%) recovered fully, 28 (35%) improved with sequelae, and 3 (4%) died. Statistically significant differences in hospitalization status were observed in baseline status, including the NMDAS score (p = 0.003) and mRS (p = 0.001), presence of respiratory dysfunction (p < 0.001), neurologic involvement (p = 0.003), and more than 4 comorbidities (p = 0.002). In multivariable analysis, respiratory dysfunction was independently associated with COVID-19 hospitalization (odds ratio, 7.66; 95% CI, 2-28; p = 0.002). DISCUSSION: Respiratory dysfunction is an independent risk factor for severe COVID-19 in PMDs while high disease burden and coexisting comorbidities contribute toward COVID-19-related hospitalization. These findings will enable risk stratification and informed management decisions for this vulnerable population.


Subject(s)
COVID-19 , Mitochondrial Diseases , COVID-19/epidemiology , COVID-19 Testing , Cross-Sectional Studies , Hospitalization , Humans , Mitochondrial Diseases/complications , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/therapy , SARS-CoV-2
19.
Brain ; 145(2): 542-554, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34927673

ABSTRACT

In this retrospective, multicentre, observational cohort study, we sought to determine the clinical, radiological, EEG, genetics and neuropathological characteristics of mitochondrial stroke-like episodes and to identify associated risk predictors. Between January 1998 and June 2018, we identified 111 patients with genetically determined mitochondrial disease who developed stroke-like episodes. Post-mortem cases of mitochondrial disease (n = 26) were identified from Newcastle Brain Tissue Resource. The primary outcome was to interrogate the clinico-radiopathological correlates and prognostic indicators of stroke-like episode in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). The secondary objective was to develop a multivariable prediction model to forecast stroke-like episode risk. The most common genetic cause of stroke-like episodes was the m.3243A>G variant in MT-TL1 (n = 66), followed by recessive pathogenic POLG variants (n = 22), and 11 other rarer pathogenic mitochondrial DNA variants (n = 23). The age of first stroke-like episode was available for 105 patients [mean (SD) age: 31.8 (16.1)]; a total of 35 patients (32%) presented with their first stroke-like episode ≥40 years of age. The median interval (interquartile range) between first and second stroke-like episodes was 1.33 (2.86) years; 43% of patients developed recurrent stroke-like episodes within 12 months. Clinico-radiological, electrophysiological and neuropathological findings of stroke-like episodes were consistent with the hallmarks of medically refractory epilepsy. Patients with POLG-related stroke-like episodes demonstrated more fulminant disease trajectories than cases of m.3243A>G and other mitochondrial DNA pathogenic variants, in terms of the frequency of refractory status epilepticus, rapidity of progression and overall mortality. In multivariate analysis, baseline factors of body mass index, age-adjusted blood m.3243A>G heteroplasmy, sensorineural hearing loss and serum lactate were significantly associated with risk of stroke-like episodes in patients with the m.3243A>G variant. These factors informed the development of a prediction model to assess the risk of developing stroke-like episodes that demonstrated good overall discrimination (area under the curve = 0.87, 95% CI 0.82-0.93; c-statistic = 0.89). Significant radiological and pathological features of neurodegeneration were more evident in patients harbouring pathogenic mtDNA variants compared with POLG: brain atrophy on cranial MRI (90% versus 44%, P < 0.001) and reduced mean brain weight (SD) [1044 g (148) versus 1304 g (142), P = 0.005]. Our findings highlight the often idiosyncratic clinical, radiological and EEG characteristics of mitochondrial stroke-like episodes. Early recognition of seizures and aggressive instigation of treatment may help circumvent or slow neuronal loss and abate increasing disease burden. The risk-prediction model for the m.3243A>G variant can help inform more tailored genetic counselling and prognostication in routine clinical practice.


Subject(s)
MELAS Syndrome , Mitochondrial Diseases , Stroke , Adult , DNA, Mitochondrial/genetics , Humans , MELAS Syndrome/genetics , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Mutation , Retrospective Studies , Stroke/diagnostic imaging , Stroke/genetics
20.
Trends Analyt Chem ; 157: 116808, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36751553

ABSTRACT

Cardiolipin (CL) is a mitochondria-exclusive phospholipid, primarily localised within the inner mitochondrial membrane, that plays an essential role in mitochondrial architecture and function. Aberrant CL content, structure, and localisation have all been linked to impaired mitochondrial activity and are observed in the pathophysiology of cancer and neurological, cardiovascular, and metabolic disorders. The detection, quantification, and localisation of CL species is a valuable tool to investigate mitochondrial dysfunction and the pathophysiological mechanisms underpinning several human disorders. CL is measured using liquid chromatography, usually combined with mass spectrometry, mass spectrometry imaging, shotgun lipidomics, ion mobility spectrometry, fluorometry, and radiolabelling. This review summarises available methods to analyse CL, with a particular focus on modern mass spectrometry, and evaluates their advantages and limitations. We provide guidance aimed at selecting the most appropriate technique, or combination of techniques, when analysing CL in different model systems, and highlight the clinical contexts in which measuring CL is relevant.

SELECTION OF CITATIONS
SEARCH DETAIL
...