Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Tuberc Lung Dis ; 24(11): 1145-1150, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33172521

ABSTRACT

TB is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent. Decreasing the length of time for TB treatment is an important step towards the goal of reducing mortality. Mechanistic in silico modelling can provide us with the tools to explore gaps in our knowledge, with the opportunity to model the complicated within-host dynamics of the infection, and simulate new treatment strategies. Significant insight has been gained using this form of modelling when applied to other diseases - much can be learned in infection research from these advances.


Subject(s)
Tuberculosis , Computer Simulation , Humans , Tuberculosis/drug therapy
2.
IUCrJ ; 5(Pt 6): 681-698, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30443353

ABSTRACT

Hexaferrites are an important class of magnetic oxides with applications in data storage and electronics. Their crystal structures are highly modular, consisting of Fe- or Ba-rich close-packed blocks that can be stacked in different sequences to form a multitude of unique structures, producing large anisotropic unit cells with lattice parameters typically >100 Šalong the stacking axis. This has limited atomic-resolution structure solutions to relatively simple examples such as Ba2Zn2Fe12O22, whilst longer stacking sequences have been modelled only in terms of block sequences, with no refinement of individual atomic coordinates or occupancies. This paper describes the growth of a series of complex hexaferrite crystals, their atomic-level structure solution by high-resolution synchrotron X-ray diffraction, electron diffraction and imaging methods, and their physical characterization by magnetometry. The structures include a new hexaferrite stacking sequence, with the longest lattice parameter of any hexaferrite with a fully determined structure.

3.
Nature ; 546(7657): 280-284, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28593963

ABSTRACT

The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios. Computational methods have been developed to guide synthesis by predicting structures at specific compositions and predicting compositions for known crystal structures, with notable successes. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them.

4.
Nat Chem ; 9(7): 644-652, 2017 07.
Article in English | MEDLINE | ID: mdl-28644481

ABSTRACT

Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid-solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure.

5.
Nature ; 525(7569): 363-6, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26381984

ABSTRACT

Ferroelectric and ferromagnetic materials exhibit long-range order of atomic-scale electric or magnetic dipoles that can be switched by applying an appropriate electric or magnetic field, respectively. Both switching phenomena form the basis of non-volatile random access memory, but in the ferroelectric case, this involves destructive electrical reading and in the magnetic case, a high writing energy is required. In principle, low-power and high-density information storage that combines fast electrical writing and magnetic reading can be realized with magnetoelectric multiferroic materials. These materials not only simultaneously display ferroelectricity and ferromagnetism, but also enable magnetic moments to be induced by an external electric field, or electric polarization by a magnetic field. However, synthesizing bulk materials with both long-range orders at room temperature in a single crystalline structure is challenging because conventional ferroelectricity requires closed-shell d(0) or s(2) cations, whereas ferromagnetic order requires open-shell d(n) configurations with unpaired electrons. These opposing requirements pose considerable difficulties for atomic-scale design strategies such as magnetic ion substitution into ferroelectrics. One material that exhibits both ferroelectric and magnetic order is BiFeO3, but its cycloidal magnetic structure precludes bulk magnetization and linear magnetoelectric coupling. A solid solution of a ferroelectric and a spin-glass perovskite combines switchable polarization with glassy magnetization, although it lacks long-range magnetic order. Crystal engineering of a layered perovskite has recently resulted in room-temperature polar ferromagnets, but the electrical polarization has not been switchable. Here we combine ferroelectricity and ferromagnetism at room temperature in a bulk perovskite oxide, by constructing a percolating network of magnetic ions with strong superexchange interactions within a structural scaffold exhibiting polar lattice symmetries at a morphotropic phase boundary (the compositional boundary between two polar phases with different polarization directions, exemplified by the PbZrO3-PbTiO3 system) that both enhances polarization switching and permits canting of the ordered magnetic moments. We expect this strategy to allow the generation of a range of tunable multiferroic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...