Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 496(7446): 528-32, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23575629

ABSTRACT

In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.


Subject(s)
Artemisinins/metabolism , Artemisinins/supply & distribution , Biosynthetic Pathways , Saccharomyces cerevisiae/metabolism , Antimalarials/economics , Antimalarials/isolation & purification , Antimalarials/metabolism , Antimalarials/supply & distribution , Artemisinins/chemistry , Artemisinins/economics , Artemisinins/isolation & purification , Biotechnology , Fermentation , Genetic Engineering , Malaria, Falciparum/drug therapy , Molecular Sequence Data , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Singlet Oxygen/metabolism
2.
Pharm Res ; 19(10): 1572-6, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12425478

ABSTRACT

PURPOSE: This study was conducted to determine the effects of counterion hydrophobicity on organic/aqueous partition coefficients for hydrophobic ion paired (HIP) complexes. Furthermore, the coupled dissolution and reverse ion-exchange kinetics for dissolution of HIP complexes into aqueous electrolyte solutions were measured and mathematically modeled. METHODS: HIP complexes of model drugs tacrine and l-phenylephrine were formed using linear sodium alkylsulfates and bis (2-ethylhexyl sodium sulfosuccinate). Equilibrium partition coefficients between chloroform and aqueous solutions for the complexes and the kinetics of dissolution of the complexes in buffered aqueous solutions were measured. RESULTS: The chloroform/aqueous partition coefficients for l-phenylephrine/bis (2-ethylhexyl sodium sulfosuccinate) complexes decrease with increasing molar surface tension increment of salts added to the aqueous solution. The logarithm of the partition coefficient for a homologous series of alkyl sulfate complexes decreases as the hydrophilic-lipophilic balance number increases. Dissolution of HIP complexes in deionized water shows first order kinetics, whereas dissolution in aqueous electrolyte solutions shows biphasic kinetics. A kinetic model explains these dissolution rates. CONCLUSIONS: Solubility and dissolution rates for HIP complexes depend on the hydrophobic-lipophilic balance number of the organic counter ion as well as on the electrolyte composition of aqueous solutions. Reverse ion-exchange kinetics are sufficiently slow to allow HIP complexes to be considered simple prodrugs.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Phenylephrine/chemistry , Solubility , Tacrine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...