Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 10(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29517990

ABSTRACT

Prolonged effects of dietary acid intake on acid-base status and kidney function have not yet been studied in an intervention study in healthy subjects. Dietary acid load can be estimated by calculating the potential renal acid load (PRAL) of foods. Effects of low-PRAL and moderate-PRAL diets on acid-base status and kidney function were investigated during a 12-week exercise training period. Healthy, 20-50-year-old men (n = 21) and women (n = 25) participated in the study and were randomly divided into low-PRAL and moderate-PRAL groups. Before (PRE), mid-phase (MID) and after the intervention (POST), the subjects participated in measurement sessions, where a 12-h urine sample and fasting blood samples were collected, and a submaximal cycle ergometer test was performed. Net acid excretion was significantly lower after 12 weeks of the low-PRAL diet as compared to the moderate-PRAL diet, both in men and women. In low-PRAL females, capillary pH and bicarbonate were significantly higher at 75% of VO2max at POST as compared to PRE. Glomerular filtration rate decreased over the study period in moderate-PRAL men and women. The results of the present study suggest that an acidogenic diet and regularly training together may increase the acidic load of the body and start to impair the kidney function in recreationally active subjects.


Subject(s)
Acid-Base Equilibrium/physiology , Diet , Exercise Test , Food Analysis , Kidney/physiology , Adult , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Physical Endurance , Resistance Training , Young Adult
2.
Appl Physiol Nutr Metab ; 42(12): 1330-1340, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28825967

ABSTRACT

Diet composition influences acid-base status of the body. This may become more relevant as renal functional capacity declines with aging. We examined the effects of low (LD) versus high dietary acid load (HD) on blood acid-base status and exercise performance. Participants included 22 adolescents, 33 young adults (YA), and 33 elderly (EL), who followed a 7-day LD and HD in a randomized order. At the end of both diet periods the subjects performed a cycle ergometer test (3 × 10 min at 35%, 55%, 75%, and (except EL) until exhaustion at 100% of maximal oxygen uptake). At the beginning of and after the diet periods, blood samples were collected at rest and after all workloads. Oxygen uptake, respiratory exchange ratio (RER), and heart rate (HR) were monitored during cycling. In YA and EL, bicarbonate (HCO3-) and base excess (BE) decreased over the HD period, and HCO3-, BE, and pH were lower at rest after HD compared with LD. In YA and EL women, HCO3- and BE were lower at submaximal workloads after HD compared with LD. In YA women, the maximal workload was 19% shorter and maximal oxygen uptake, RER, and HR were lower after HD compared with LD. Our data uniquely suggests that better renal function is associated with higher availability of bases, which may diminish exercise-induced acidosis and improve maximal aerobic performance. Differences in glomerular filtration rate between the subject groups likely explains the larger effects of dietary acid load in the elderly compared with younger subjects and in women compared with men.


Subject(s)
Acid-Base Equilibrium/physiology , Diet , Kidney/physiology , Adolescent , Adult , Aged , Bicarbonates/administration & dosage , Bicarbonates/pharmacology , Breath Tests , Exercise/physiology , Exercise Test , Female , Humans , Kidney Function Tests , Male , Middle Aged , Oxygen Consumption/physiology
3.
Med Sci Sports Exerc ; 35(5): 784-92, 2003 May.
Article in English | MEDLINE | ID: mdl-12750588

ABSTRACT

PURPOSE: The aim of this study was to assess the effects of a resistance exercise session (RES) on free amino acid concentrations and protein synthesis and breakdown of the vastus lateralis (VL) muscle during recovery in male subjects. METHODS: Both the exercise group (EG) and the control group (CG) consisted of six healthy physically active men. On the experiment day in fasting conditions, a stable isotopic tracer of L-[ring-2H(5)] phenylalanine was infused and EG started a heavy 50-min hypertrophic RES for lower extremities after 55 min of infusion. At the same time, CG was at rest. During recovery of 195 min after RES, several blood samples were drawn from the femoral artery (FA) and the femoral vein (FV) and muscle samples from the VL muscle. The enrichment was analyzed by GC/MS and leg muscle amino acid kinetics determined by three-pool compartment model between FA, FV, and VL. RESULTS: During recovery at 60 min after RES, there was no difference in muscle protein synthesis or muscle protein breakdown between the groups, but at 195 min, both muscle protein synthesis (P < 0.05) and muscle protein breakdown (P < 0.05) were increased in EG compared with CG. The protein net balance was negative and similar in both groups. Simultaneously in serum concentrations, there was a decrease in leucine (P < 0.05) associated with an increase in aspartate (P < 0.05). Furthermore, the exercise-induced increase in alanine concentration decreased both in serum and muscle. CONCLUSION: In fasting conditions, protein net balance is negative and RES induces an increase in muscle protein synthesis and breakdown at 195 min but not yet at 60 min of recovery.


Subject(s)
Amino Acids, Essential/metabolism , Exercise/physiology , Leg/blood supply , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Weight Lifting , Adult , Amino Acids, Essential/blood , Biological Transport , Case-Control Studies , Humans , Male , Multivariate Analysis , Muscle Proteins/blood , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Phenylalanine/blood , Phenylalanine/metabolism , Physical Exertion/physiology , Probability , Reference Values , Regional Blood Flow , Sensitivity and Specificity
4.
J Strength Cond Res ; 16(3): 390-8, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12173953

ABSTRACT

The purpose of this study was to examine power-type athletes to determine changes in amino acid and hormone concentrations in circulating blood following 2 different high-intensity exercise sessions before and after the 5-week training period. Eleven competitive male sprinters and jumpers performed 2 different running exercise sessions: a short run session (SRS) of 3 x 4 x 60 m (intensity of 91-95%) with recoveries of 120 and 360 seconds, and a long run session (LRS) with 20-second intervals (intensity of 56-100%) with recoveries of 100 seconds to exhaustion. The concentrations of serum amino acids, hormones, and lactate were determined from the blood samples drawn after an overnight fast and 10 minutes before and after both SRS and LRS. The average blood lactate concentrations were 12.7 +/- 1.6 mmol;pdL(-1) and 16.6 +/- 1.4 mmol;pdL(-1) (p < 0.01) following SRS and LRS, respectively. The average total running time was longer (p < 0.001) following LRS (164 +/- 20 seconds) than following SRS (91 +/- 8 seconds). The fasting levels of all amino acids decreased (p = 0.024; 19.4%) after the 5-week period, whereas an increase (p = 0.007; 24.5%) was observed in the fasting concentration of testosterone (TE). The exercise sessions induced no changes in the total sum of all amino acids, but significant increases or decreases were observed in single amino acids. When the range of the relative concentration changes before and after the training period was compared, significant decreases were found in valine (p = 0.048), asparagine (p = 0.029), and taurine (p = 0.030) following SRS. There were significant increases in the absolute hormonal concentration changes following LRS with TE (p = 0.002; 30.4%), cortisol (COR; p = 0.006; 12.0%), and in the TE/COR ratio (p = 0.047; 21.0%) but not in the concentration of growth hormone (GH). The results of the study indicate that the speed and strength training period strongly decreases the fasting concentrations of amino acids in the power-trained athletes in a good anabolic state with the daily protein intake of 1.26 g;pdkg(-1) body weight. At the same time the intensive lactic exercise session induces strong decreases, especially in valine, asparagine, and taurine.


Subject(s)
Amino Acids/blood , Exercise/physiology , Hormones/blood , Adult , Growth Hormone/blood , Humans , Hydrocortisone/blood , Lactic Acid/blood , Male , Testosterone/blood , Track and Field
SELECTION OF CITATIONS
SEARCH DETAIL
...