Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 355(6328): 925-931, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28254935

ABSTRACT

The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.


Subject(s)
Domestication , Forests , Trees , Brazil , History, Ancient , Humans
2.
Philos Trans R Soc Lond B Biol Sci ; 359(1443): 381-407, 2004 Mar 29.
Article in English | MEDLINE | ID: mdl-15212092

ABSTRACT

Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests.


Subject(s)
Biodiversity , Environmental Monitoring , Trees , Biomass , Carbon/analysis , Geography , Longitudinal Studies , Mortality , Population Dynamics , Rain , Reproduction/physiology , Soil/analysis , South America , Tropical Climate
3.
Am J Bot ; 88(6): 1096-102, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11410475

ABSTRACT

Leaf margin characters are strong predictors of mean annual temperature (MAT) in modern plant communities and widely used tools for reconstructing paleoclimates from fossil floras. However, the frequency of nonentire-margined species may vary dramatically between different habitats of the same forest. In this paper we explore the potential for this habitat variation to introduce error into temperature reconstructions, based on field data from a modern lowland forest in Amazonian Ecuador.The data show that the provenance of leaves can influence temperature estimates to an important degree and in a consistent direction. Woody plants growing along lakes and rivers underestimated MAT by 2.5°-5°C, while those in closed-canopy forest provided very accurate predictions. The high proportion of liana species with toothed leaves in lakeside and riverside samples appears to be responsible for a large part of the bias. Samples from closed-canopy forest that included both lianas and trees, however, were more accurate than tree-only or liana-only samples.We conclude that paleotemperature reconstructions based on leaf margin characters will be misleading to the extent that fossilization provides a better record of certain habitats than others. The preponderance of lake and river deposits in the angiosperm fossil record suggests that underestimation of mean annual paleotemperature may be common.

SELECTION OF CITATIONS
SEARCH DETAIL
...