Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Dermatol ; 191(1): 92-106, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38375775

ABSTRACT

BACKGROUND: Extracellular matrices play a critical role in tissue structure and function and aberrant remodelling of these matrices is a hallmark of many age-related diseases. In skin, loss of dermal collagens and disorganization of elastic fibre components are key features of photoageing. Although the application of some small matrix-derived peptides to aged skin has been shown to beneficially affect in vitro cell behaviour and, in vivo, molecular architecture and clinical appearance, the discovery of new peptides has lacked a guiding hypothesis. OBJECTIVES: To identify, using protease cleavage site prediction, novel putative matrikines with beneficial activities for skin composition and structure. METHODS: Here, we present an in silico (peptide cleavage prediction) to in vitro (proteomic and transcriptomic activity testing in cultured human dermal fibroblasts) to in vivo (short-term patch test and longer-term split-face clinical study) discovery pipeline, which enables the identification and characterization of peptides with differential activities. RESULTS: Using this pipeline we showed that cultured fibroblasts were responsive to all applied peptides, but their associated bioactivity was sequence-dependent. Based on bioactivity, toxicity and protein source, we further characterized a combination of two novel peptides, GPKG (glycine-proline-lysine-glycine) and LSVD (leucine-serine-valine-aspartate), that acted in vitro to enhance the transcription of matrix -organization and cell proliferation genes and in vivo (in a short-term patch test) to promote processes associated with epithelial and dermal maintenance and remodelling. Prolonged use of a formulation containing these peptides in a split-face clinical study led to significantly improved measures of crow's feet and firmness in a mixed population. CONCLUSIONS: This approach to peptide discovery and testing can identify new synthetic matrikines, providing insights into biological mechanisms of tissue homeostasis and repair and new pathways to clinical intervention.


Like other organs and tissues, the skin is composed of both cells and a complex network of molecules and proteins called an extracellular matrix. This matrix contains proteins such as collagen and elastin and undergoes many changes when the skin is damaged by the sun. We know from previous studies that small parts of matrix proteins (called peptide 'matrikines') can help to treat the signs of sun-related skin ageing. In this UK study, we show that new beneficial peptides (with matrikine activity) can be identified using machine learning (artificial intelligence) techniques that predict where common matrix proteins might be 'cut' by skin enzymes. Candidate peptides were first made in the laboratory and then applied to skin cells in culture. These cell culture screens demonstrated that, while all the peptides showed some matrikine activity, two were particularly promising. These two peptides were then tested in a short-term study on the forearm skin of volunteers and, in a longer-term study, on the face. We found that the combination of these two peptides can prompt forearm skin cells to express genes that are involved in many different aspect of skin health and, over the longer 6-month period, produce visible benefits in the appearance of fine lines and wrinkles and firmness on the face. Our findings suggest that this approach may be able to identify beneficial peptide treatments for not only skin ageing and diseases, but also unwanted changes in the extracellular matrix of other tissues and organs.


Subject(s)
Fibroblasts , Oligopeptides , Rejuvenation , Skin Aging , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Skin Aging/drug effects , Oligopeptides/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Cells, Cultured , Female , Middle Aged , Cell Proliferation/drug effects , Extracellular Matrix/metabolism , Male , Extracellular Matrix Proteins/metabolism , Adult , Aged , Proteomics/methods
2.
Nat Struct Mol Biol ; 25(10): 971-980, 2018 10.
Article in English | MEDLINE | ID: mdl-30291363

ABSTRACT

The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to the ends of DNA double-strand breaks and recruits factors of the non-homologous end-joining (NHEJ) repair pathway through molecular interactions that remain unclear. We have determined crystal structures of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) bound to a Ku-DNA complex. The two KBM motifs bind remote sites of the Ku80 α/ß domain. The X-KBM occupies an internal pocket formed by an unprecedented large outward rotation of the Ku80 α/ß domain. We observe independent recruitment of the APLF-interacting protein XRCC4 and of XLF to laser-irradiated sites via binding of A- and X-KBMs, respectively, to Ku80. Finally, we show that mutation of the X-KBM and A-KBM binding sites in Ku80 compromises both the efficiency and accuracy of end joining and cellular radiosensitivity. A- and X-KBMs may represent two initial anchor points to build the intricate interaction network required for NHEJ.


Subject(s)
DNA End-Joining Repair , DNA Repair Enzymes/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-Binding Proteins/chemistry , Ku Autoantigen/chemistry , Poly-ADP-Ribose Binding Proteins/chemistry , Conserved Sequence , Crystallography, X-Ray , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/physiology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Humans , Ku Autoantigen/metabolism , Ku Autoantigen/physiology , Models, Molecular , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/physiology , Protein Domains
3.
Appl Radiat Isot ; 124: 7-15, 2017 06.
Article in English | MEDLINE | ID: mdl-28314164

ABSTRACT

An Excel calculation spreadsheet has been developed to estimate the uncertainty of measurement results in γ-ray spectrometry. It considers all relevant uncertainty components and calculates the combined standard uncertainty of the measurement result. The calculation spreadsheet has been validated using two independent open access software and is available for download free of charge at: https://nucleus.iaea.org/rpst/ReferenceProducts/Analytical_Methods/index.htm. It provides a simple and easy-to-use template for estimating the uncertainty of γ-ray spectrometry measurement results and supports the radioanalytical laboratories seeking accreditation for their measurements using γ-ray spectrometry.

4.
J Colloid Interface Sci ; 325(1): 93-100, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18571189

ABSTRACT

A kinetic study of Aldrich humic acid sorption onto a quartz sand surface has revealed an initial rapid uptake of humic acid molecules followed by a much slower sorption. The humic acid molecular weight and chemical fractionation resulting from adsorption onto the simple quartz sand surface were investigated for the two kinetic steps by coupled asymmetric flow-field flow fractionation-UV/visible absorption spectrophotometry. The molecular weight distribution of residual humic acid in solution after adsorption deviated from the original molecular weight distribution, showing preferential adsorption of certain molecular weight components. This fractionation is different after the two kinetic steps. Humic acid molecules characterised by a molecular weight below 4800 Da and with a weight-average molecular weight (M(w)) of 1450 Da were adsorbed after the fast kinetic step, whereas humic acid molecules in the molecular weight range 1400-9200 Da and of M(w) 3700 Da were adsorbed after the slower uptake. Therefore, the adsorption of low molecular weight humic components takes place initially, and is then followed by the adsorption of higher molecular weight components. Chemical adsorptive fractionation, investigated by studying the 253 nm/203 nm absorbance ratio over time, shows that aromatic components are preferentially adsorbed during the fast kinetic step. The fractionation pattern may be explained by the physicochemical characteristics of the Aldrich humic acid and the underlying sorption processes. The trend for the sorption kinetics of europium onto the quartz sand surface in the presence of humic acid is similar to that of the humic acid itself.

5.
J Environ Monit ; 10(3): 315-24, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18392273

ABSTRACT

The distribution of 152Eu between magnesium hydroxide bulk, colloids and solution has been assessed under alkaline conditions, such as those in nuclear fuel storage ponds. The colloidal phase has been characterised by two complementary methods: coupled ultrafiltration-ICP-AES and scanning electron microscopy. The quantity and the size distribution of the colloidal phase is strongly ionic strength-dependent. A decrease of the quantity of colloids, in particular the larger size ranges, has been observed with increasing ionic strength. Small colloids (1 kDa-10 kDa fraction) are predominant at all ionic strengths. The morphology of colloids, observed by field-emission gun scanning electron microscopy, appears to change from hexagonal prismatic (characteristic to the mineral) to spherical (energetically more favourable) as size decreases. The distribution of 152Eu between the solid and liquid/colloidal phases has been investigated at carbonate concentrations ranging from 0 to 10(-2) M by coupled ultrafiltration and gamma-spectrometry. Mg(OH)2 bulk appears to be a very strong sorbent for 152Eu, since complete sorption onto the bulk happens for carbonate concentrations as high as 10(-3) M. Scavenging of 152Eu by Mg(OH)2 colloids is negligible in the presence of Mg(OH)2 bulk. The distribution of 152Eu between liquid and colloidal phases has been investigated in the absence of bulk at various carbonate concentrations. A significant uptake of 152Eu by the colloids in solution has been observed, which decreases with increasing carbonate concentration. 152Eu appears to be mainly associated to the smallest colloids (1 kDa-10 kDa fraction). There is a strong correlation between the sorption properties and the surface area of the colloids.


Subject(s)
Carbonates/chemistry , Colloids/chemistry , Environmental Monitoring , Europium/analysis , Magnesium Hydroxide/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Europium/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Molecular Weight , Osmolar Concentration , Spectrophotometry, Atomic , Ultrafiltration
6.
J Environ Monit ; 9(4): 329-47, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17410308

ABSTRACT

Metal ions form strong complexes with humic substances. When the metal ion is first complexed by humic material, it is bound in an 'exchangeable' mode. The metal ion in this fraction is strongly bound, however, if the metal-humic complex encounters a stronger binding site on a surface, then the metal ion may dissociate from the humic substance and be immobilised. However, over time, exchangeably-bound metal may transfer to a 'non-exchangeable' mode. Transfer into this mode and dissociation from it are slow, regardless of the strength of the competing sink, and so immobilisation may be hindered. A series of coupled chemical transport calculations has been performed to investigate the likely effects of non-exchangeable binding upon the transport of metal ions in the environment. The calculations show that metal in the non-exchangeable mode will have a significantly higher mobility than that in the exchangeable mode. The critical factor is the ratio of the non-exchangeable first-order dissociation rate constant and the residence time in the groundwater column, metal ion mobility increasing with decreasing rate constant. A second series of calculations has investigated the effect of the sorption to surfaces of humic/metal complexes on the transport of the non-exchangeably bound metal. It was found that such sorption may reduce mobility, depending upon the humic fraction to which the metal ion is bound. For the more weakly sorbing humic fractions, under ambient conditions (humic concentration etc.) the non-exchangeable fraction may still transport significantly. However, for the more strongly sorbed fractions, the non-exchangeable fraction has little effect upon mobility. In addition to direct retardation, sorption also increases the residence time of the non-exchangeable fraction, giving more time for dissociation and immobilisation. The non-exchangeable dissociation reaction, and the sorption reaction have been classified in terms of two Damkohler numbers, which can be used to determine the importance of chemical kinetics during transport calculations. These numbers have been used to develop a set of rules that determine when full chemical kinetic calculations are required for a reliable prediction, and when equilibrium may be assumed, or when the reactions are sufficiently slow that they may be ignored completely.


Subject(s)
Humic Substances , Metals/chemistry , Models, Chemical , Water Pollutants, Radioactive/chemistry , Kinetics , Numerical Analysis, Computer-Assisted
7.
Anal Bioanal Chem ; 384(3): 751-60, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16372182

ABSTRACT

Boron neutron capture therapy (BNCT) is a bimodal radiotherapeutic treatment based on the irradiation of neoplastic tissues with neutrons after the tissues have selectively accumulated molecules loaded with nuclides with large neutron capture cross-sections (such boron-10). Boron-10 carriers have been tested to a limited extent, and clinical trials have been conducted on sulfhydryl borane (10B-BSH) and boronophenylalanine (10B-BPA). However, precise and accurate measurements of boron-10 concentrations (0.1-100 microg/g) in specimens and samples of limited size (microg scale) are needed in order to be able to biologically characterise new compounds in predictive tissue dosimetry, toxicology and pharmacology studies as well as in clinical investigations. A new approach based on fast separation and detection of 10B-BPA performed by coupling capillary electrophoresis to electrospray mass spectrometry is reported. This method allows the quantitative analysis and characterisation of 10B-BPA in a short time with a high separation efficiency. Detection limits of 3 microM for 10B-BPA and 30 ng/mL for 10B were obtained with CE-ESI-MS. A quantification limit of 10 microM for 10B-BPA (100 ng/mL for 10B) was attained. The total boron-10 concentration was determined by high-resolution inductively coupled mass spectrometry in order to validate the method. Boron-10 isotope measurements were carried out by HR-ICP-MS at medium resolution (R=4000) due to the presence of an isobaric interference at mass 10. Good agreement was obtained between the values from CE-ESI-MS and those from HR-ICP-MS. The method has been successfully used to determine the 10B-BPA in two lines of cultured cells.


Subject(s)
Boron Compounds/analysis , Boron Neutron Capture Therapy , Endothelial Cells/chemistry , Glioma/chemistry , Mass Spectrometry/methods , Phenylalanine/analogs & derivatives , Animals , Boron Compounds/pharmacokinetics , Cell Line, Tumor , Electrophoresis, Capillary , Endothelial Cells/metabolism , Glioma/metabolism , Humans , Isotopes , Molecular Structure , Phenylalanine/analysis , Phenylalanine/pharmacokinetics , Rats , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...