Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 109(3): 405-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37847495

ABSTRACT

Mechanical load is one of the main determinants of cardiac structure and function. Mechanical load is studied in vitro using cardiac preparations together with loading protocols (e.g., auxotonic, isometric). However, such studies are often limited by reductionist models and poorly simulated mechanical load profiles. This hinders the physiological relevance of findings. Living myocardial slices have been used to study load in vitro. Living myocardial slices (LMS) are 300-µm-thick intact organotypic preparations obtained from explanted animal or human hearts. They have preserved cellular populations and the functional, structural, metabolic and molecular profile of the tissue from which they are prepared. Using a three-element Windkessel (3EWK) model we previously showed that LMSs can be cultured while performing cardiac work loops with different preload and afterload. Under such conditions, LMSs remodel as a function of the mechanical load applied to them (physiological load, pressure or volume overload). These studies were conducted in commercially available length actuators that had to be extensively modified for culture experiments. In this paper, we demonstrate the design, development and validation of a novel device, MyoLoop. MyoLoop is a bioreactor that can pace, thermoregulate, acquire and process data, and chronically load LMSs and other cardiac tissues in vitro. In MyoLoop, load is parametrised using a 3EWK model, which can be used to recreate physiological and pathological work loops and the remodelling response to these. We believe MyoLoop is the next frontier in basic cardiovascular research enabling reductionist but physiologically relevant in vitro mechanical studies.


Subject(s)
Bioreactors , Heart , Animals , Humans , Myocardium , Research Design
2.
Front Cardiovasc Med ; 10: 1212875, 2023.
Article in English | MEDLINE | ID: mdl-37600037

ABSTRACT

In recent years, development of mechanical circulatory support devices has proved to be a new treatment modality, in addition to standard pharmacological therapy, for patients with heart failure or acutely depressed cardiac function. These include left ventricular assist devices, which mechanically unload the heart when implanted. As a result, they profoundly affect the acute cardiac mechanics, which in turn, carry long-term consequences on myocardial function and structural function. Multiple studies have shown that, when implanted, mechanical circulatory assist devices lead to reverse remodelling, a process whereby the diseased myocardium reverts to a healthier-like state. Here, we start by first providing the reader with an overview of cardiac mechanics and important hemodynamic parameters. We then introduce left ventricular assist devices and describe their mode of operation as well as their impact on the hemodynamics. Changes in cardiac mechanics caused by device implantation are then extrapolated in time, and the long-term consequences on myocardial phenotype, as well as the physiological basis for these, is investigated.

3.
ESC Heart Fail ; 9(2): 1400-1412, 2022 04.
Article in English | MEDLINE | ID: mdl-35128823

ABSTRACT

AIMS: Altered mechanical load in response to injury is a main driver of myocardial interstitial fibrosis. No current in vitro model can precisely modulate mechanical load in a multicellular environment while maintaining physiological behaviour. Living myocardial slices (LMS) are a 300 µm-thick cardiac preparation with preserved physiological structure and function. Here we apply varying degrees of mechanical preload to rat and human LMS to evaluate early cellular, molecular, and functionality changes related to myocardial fibrosis. METHODS AND RESULTS: Left ventricular LMS were obtained from Sprague Dawley rat hearts and human cardiac samples from healthy and failing (dilated cardiomyopathy) hearts. LMS were mounted on custom stretchers and two degrees of diastolic load were applied: physiological sarcomere length (SL) (SL = 2.2 µm) and overload (SL = 2.4 µm). LMS were maintained for 48 h under electrical stimulation in circulating, oxygenated media at 37°C. In overloaded conditions, LMS displayed an increase in nucleus translocation of Yes-associated protein (YAP) and an up-regulation of mechanotransduction markers without loss in cell viability. Expression of fibrotic and inflammatory markers, as well as Collagen I deposition were also observed. Functionally, overloaded LMS displayed lower contractility (7.48 ± 3.07 mN mm-2 at 2.2 SL vs. 3.53 ± 1.80 mN mm-2 at 2.4 SL). The addition of the profibrotic protein interleukin-11 (IL-11) showed similar results to the application of overload with enhanced fibrosis (8% more of collagen surface coverage) and reduced LMS contractility at physiological load. Conversely, treatment with the Transforming growth factor ß receptor (TGF-ßR) blocker SB-431542, showed down-regulation of genes associated with mechanical stress, prevention of fibrotic response and improvement in cardiac function despite overload (from 2.40 ± 0.8 mN mm-2 to 4.60 ± 1.08 mN mm-2 ). CONCLUSIONS: The LMS have a consistent fibrotic remodelling response to pathological load, which can be modulated by a TGF-ßR blocker. The LMS platform allows the study of mechanosensitive molecular mechanisms of myocardial fibrosis and can lead to the development of novel therapeutic strategies.


Subject(s)
Cardiomyopathies , Mechanotransduction, Cellular , Animals , Cardiomyopathies/pathology , Fibrosis , Humans , Myocardium/pathology , Rats , Rats, Sprague-Dawley
4.
Cardiovasc Res ; 118(3): 814-827, 2022 02 21.
Article in English | MEDLINE | ID: mdl-33723566

ABSTRACT

AIMS: Cardiac remodelling is the process by which the heart adapts to its environment. Mechanical load is a major driver of remodelling. Cardiac tissue culture has been frequently employed for in vitro studies of load-induced remodelling; however, current in vitro protocols (e.g. cyclic stretch, isometric load, and auxotonic load) are oversimplified and do not accurately capture the dynamic sequence of mechanical conformational changes experienced by the heart in vivo. This limits translational scope and relevance of findings. METHODS AND RESULTS: We developed a novel methodology to study chronic load in vitro. We first developed a bioreactor that can recreate the electromechanical events of in vivo pressure-volume loops as in vitro force-length loops. We then used the bioreactor to culture rat living myocardial slices (LMS) for 3 days. The bioreactor operated based on a 3-Element Windkessel circulatory model enabling tissue mechanical loading based on physiologically relevant parameters of afterload and preload. LMS were continuously stretched/relaxed during culture simulating conditions of physiological load (normal preload and afterload), pressure-overload (normal preload and high afterload), or volume-overload (high preload & normal afterload). At the end of culture, functional, structural, and molecular assays were performed to determine load-induced remodelling. Both pressure- and volume-overloaded LMS showed significantly decreased contractility that was more pronounced in the latter compared with physiological load (P < 0.0001). Overloaded groups also showed cardiomyocyte hypertrophy; RNAseq identified shared and unique genes expressed in each overload group. The PI3K-Akt pathway was dysregulated in volume-overload while inflammatory pathways were mostly associated with remodelling in pressure-overloaded LMS. CONCLUSION: We have developed a proof-of-concept platform and methodology to recreate remodelling under pathophysiological load in vitro. We show that LMS cultured in our bioreactor remodel as a function of the type of mechanical load applied to them.


Subject(s)
Heart Failure , Myocardial Contraction , Animals , Heart/physiology , Myocardium , Phosphatidylinositol 3-Kinases , Rats
5.
JCI Insight ; 6(15)2021 08 09.
Article in English | MEDLINE | ID: mdl-34369384

ABSTRACT

Engineered heart tissue (EHT) strategies, by combining cells within a hydrogel matrix, may be a novel therapy for heart failure. EHTs restore cardiac function in rodent injury models, but more data are needed in clinically relevant settings. Accordingly, an upscaled EHT patch (2.5 cm × 1.5 cm × 1.5 mm) consisting of up to 20 million human induced pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) embedded in a fibrin-based hydrogel was developed. A rabbit myocardial infarction model was then established to test for feasibility and efficacy. Our data showed that hPSC-CMs in EHTs became more aligned over 28 days and had improved contraction kinetics and faster calcium transients. Blinded echocardiographic analysis revealed a significant improvement in function in infarcted hearts that received EHTs, along with reduction in infarct scar size by 35%. Vascularization from the host to the patch was observed at week 1 and stable to week 4, but electrical coupling between patch and host heart was not observed. In vivo telemetry recordings and ex vivo arrhythmia provocation protocols showed that the patch was not pro-arrhythmic. In summary, EHTs improved function and reduced scar size without causing arrhythmia, which may be due to the lack of electrical coupling between patch and host heart.


Subject(s)
Heart Failure , Myocardial Infarction , Myocardium/cytology , Tissue Engineering/methods , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Cardiac Surgical Procedures , Guided Tissue Regeneration/methods , Heart Failure/prevention & control , Heart Failure/therapy , Humans , Hydrogels/therapeutic use , Induced Pluripotent Stem Cells , Myocardial Contraction/physiology , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Rabbits
6.
J Mol Cell Cardiol ; 141: 11-16, 2020 04.
Article in English | MEDLINE | ID: mdl-32201175

ABSTRACT

Determining transmural mechanical properties in the heart provides a foundation to understand physiological and pathophysiological cardiac mechanics. Although work on mechanical characterisation has begun in isolated cells and permeabilised samples, the mechanical profile of living individual cardiac layers has not been examined. Myocardial slices are 300 µm-thin sections of heart tissue with preserved cellular stoichiometry, extracellular matrix, and structural architecture. This allows for cardiac mechanics assays in the context of an intact in vitro organotypic preparation. In slices obtained from the subendocardium, midmyocardium and subepicardium of rats, a distinct pattern in transmural contractility is found that is different from that observed in other models. Slices from the epicardium and midmyocardium had a higher active tension and passive tension than the endocardium upon stretch. Differences in total myocyte area coverage, and aspect ratio between layers underlined the functional readouts, while no differences were found in total sarcomeric protein and phosphoprotein between layers. Such intrinsic heterogeneity may orchestrate the normal pumping of the heart in the presence of transmural strain and sarcomere length gradients in the in vivo heart.


Subject(s)
Myocardium/metabolism , Animals , Biomechanical Phenomena , Carrier Proteins/metabolism , Myosin Light Chains/metabolism , Phosphorylation , Rats, Sprague-Dawley , Sarcomeres/metabolism , Troponin/metabolism
7.
Front Physiol ; 11: 92, 2020.
Article in English | MEDLINE | ID: mdl-32116796

ABSTRACT

The adult human heart has an exceptional ability to alter its phenotype to adapt to changes in environmental demand. This response involves metabolic, mechanical, electrical, and structural alterations, and is known as cardiac plasticity. Understanding the drivers of cardiac plasticity is essential for development of therapeutic agents. This is particularly important in contemporary cardiology, which uses treatments with peripheral effects (e.g., on kidneys, adrenal glands). This review focuses on the effects of different hemodynamic loads on myocardial phenotype. We examine mechanical scenarios of pressure- and volume overload, from the initial insult, to compensated, and ultimately decompensated stage. We discuss how different hemodynamic conditions occur and are underlined by distinct phenotypic and molecular changes. We complete the review by exploring how current basic cardiac research should leverage available cardiac models to study mechanical load in its different presentations.

8.
Cardiovasc Res ; 116(7): 1275-1287, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31868875

ABSTRACT

Although past decades have witnessed significant reductions in mortality of heart failure together with advances in our understanding of its cellular, molecular, and whole-heart features, a lot of basic cardiac research still fails to translate into clinical practice. In this review we examine myocardial slices, a novel model in the translational arena. Myocardial slices are living ultra-thin sections of heart tissue. Slices maintain the myocardium's native function (contractility, electrophysiology) and structure (multicellularity, extracellular matrix) and can be prepared from animal and human tissue. The discussion begins with the history and current advances in the model, the different interlaboratory methods of preparation and their potential impact on results. We then contextualize slices' advantages and limitations by comparing it with other cardiac models. Recently, sophisticated methods have enabled slices to be cultured chronically in vitro while preserving the functional and structural phenotype. This is more timely now than ever where chronic physiologically relevant in vitro platforms for assessment of therapeutic strategies are urgently needed. We interrogate the technological developments that have permitted this, their limitations, and future directions. Finally, we look into the general obstacles faced by the translational field, and how implementation of research systems utilizing slices could help in resolving these.


Subject(s)
In Vitro Techniques , Microtomy , Myocardium , Translational Research, Biomedical , Animals , Cell Communication , Humans , Myocardium/cytology , Myocardium/metabolism , Phenotype , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...