Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Stress ; 31: 100656, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994219

ABSTRACT

Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.

2.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746268

ABSTRACT

Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.

3.
Environ Monit Assess ; 193(1): 35, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33409602

ABSTRACT

Birds can serve as effective biomonitors of air pollution, yet few studies have quantified external particulate matter accumulation on bird feathers. Biomonitoring of airborne elemental carbon (EC) is of critical significance because EC is a component of particulate matter with adverse effects on air quality and human health. To assess their effectiveness for use in EC monitoring, we compared EC accumulation on bird feathers at two sites that differed in vehicular traffic volume in an urban environment within the Dallas-Fort Worth Metropolitan Area, USA. Moulted flight feathers from domestic chickens were experimentally exposed to ambient EC pollution for 5 days in two urban microenvironments 1.5 km distant from each other that differed in traffic volume--adjacent to an interstate highway and a university campus bus stop. Feathers near the highway accumulated approximately eight times more EC (307 ± 34 µg m-2 day-1), on average, than feathers near the bus stop (40 ± 9 µg m-2 day-1). These findings indicate that EC accumulation on feathers varies over short distances within urban areas and that bird feathers potentially can be used for biomonitoring airborne EC.


Subject(s)
Air Pollutants , Feathers , Air Pollutants/analysis , Animals , Carbon/analysis , Chickens , Environmental Monitoring , Feathers/chemistry , Humans , Particulate Matter/analysis , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...