Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Virol ; 173: 105681, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38733664

ABSTRACT

BACKGROUND: Following the pandemic restrictions, the epidemiology of respiratory syncytial virus (RSV) has changed, leading to intense hospitalization peaks. OBJECTIVES: This study, conducted at multiple sites in Italy, aimed to describe the temporal dynamics of two post-COVID-19 RSV epidemics. Additionally, the circulating RSV-A and -B lineages were characterized and compared to those found in 2018 and 2019. STUDY DESIGN: Respiratory specimens and data were collected from RSV-positive patients, both inpatients, and outpatients, of all ages at three sites in north-central Italy. To analyze these samples, roughly one-sixth were sequenced in the attachment glycoprotein G gene and subjected to phylogenetic and mutational analyses, including pre-pandemic sequences from north-central Italy. RESULTS: The first post-pandemic surge of RSV cases was quite intense, occurring from October 2021 to early January 2022. The subsequent RSV epidemic (from November 2022 to early March 2023) also had a high impact, characterized by a rise in elderly patient cases. Post-pandemic cases of RSV-A were caused by various strains present in Italy prior to COVID-19. In contrast, a distinct RSV-B lineage, which was concurrently spreading in other countries, was identified as the main cause of the surge in 2022-2023 but remained undetected in Italy before the pandemic. CONCLUSIONS: This study describes the temporal dynamics of post-pandemic RSV subgroups and uncovers a lineage of RSV-B with high genetic divergence that may have increased the impact of decreased population immunity.


Subject(s)
Phylogeny , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Italy/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/isolation & purification , Infant , Child, Preschool , Child , Aged , Adolescent , Adult , Middle Aged , COVID-19/epidemiology , COVID-19/virology , Female , Male , Young Adult , SARS-CoV-2/genetics , Infant, Newborn , Pandemics
2.
J Med Virol ; 96(5): e29658, 2024 May.
Article in English | MEDLINE | ID: mdl-38727043

ABSTRACT

Echovirus 11 (E11) has gained attention owing to its association with severe neonatal infections. Due to the limited data available, the World Health Organization (WHO) considers public health risk to the general population to be low. The present study investigated the genetic variation and molecular evolution of E11 genomes collected from May to December 2023. Whole genome sequencing (WGS) was performed for 16 E11 strains. Phylogenetic analysis on WG showed how all Italian strains belonged to genogroup D5, similarly to other E11 strains recently reported in France and Germany all together aggregated into separate clusters. A cluster-specific recombination pattern was also identified using phylogenetic analysis of different genome regions. Echovirus 6 was identified as the major recombinant virus in 3Cpro and 3Dpol regions. The molecular clock analysis revealed that the recombination event probably occurred in June 2018 (95% HPD interval: Jan 2016-Jan 2020). Shannon entropy analyses, within P1 region, showed how 11 amino acids exhibited relatively high entropy. Five of them were exposed on the canyon region which is responsible for receptor binding with the neonatal Fc receptor. The present study showed the recombinant origin of a new lineage of E11 associated with severe neonatal infections.


Subject(s)
Echovirus Infections , Enterovirus B, Human , Genome, Viral , Genotype , Phylogeny , Recombination, Genetic , Humans , Infant, Newborn , Genome, Viral/genetics , Enterovirus B, Human/genetics , Enterovirus B, Human/classification , Enterovirus B, Human/isolation & purification , Echovirus Infections/virology , Echovirus Infections/epidemiology , Genetic Variation , Whole Genome Sequencing , Evolution, Molecular , Italy/epidemiology
3.
Int J Infect Dis ; 142: 106998, 2024 May.
Article in English | MEDLINE | ID: mdl-38458420

ABSTRACT

OBJECTIVES: Following the alert of echovirus 11 (E-11) infection in neonates in EU/EEA Member States, we conducted an investigation of E-11 circulation by gathering data from community and hospital surveillance of enterovirus (EV) in northern Italy from 01 August 2021 to 30 June 2023. METHODS: Virological results of EVs were obtained from the regional sentinel surveillance database for influenza-like illness (ILI) in outpatients, and from the laboratory database of ten hospitals for inpatients with either respiratory or neurological symptoms. Molecular characterization of EVs was performed by sequence analysis of the VP1 gene. RESULTS: In our ILI series, the rate of EV-positive specimens showed an upward trend from the end of May 2023, culminating at the end of June, coinciding with an increase in EV-positive hospital cases. The E-11 identified belonged to the D5 genogroup and the majority (83%) were closely associated with the novel E-11 variant, first identified in severe neonatal infections in France since 2022. E-11 was identified sporadically in community cases until February 2023, when it was also found in hospitalized cases with a range of clinical manifestations. All E-11 cases were children, with 14 out of 24 cases identified through hospital surveillance. Of these cases, 60% were neonates, and 71% had severe clinical manifestations. CONCLUSION: Baseline epidemiological data collected since 2021 through EV laboratory-based surveillance have rapidly tracked the E-11 variant since November 2022, alongside its transmission during the late spring of 2023.


Subject(s)
Enterovirus Infections , Enterovirus , Virus Diseases , Child , Infant, Newborn , Humans , Infant , Enterovirus/genetics , Sentinel Surveillance , Inpatients , Enterovirus Infections/diagnosis , Enterovirus B, Human/genetics , Italy/epidemiology , Hospitals , Phylogeny
4.
Euro Surveill ; 28(24)2023 06.
Article in English | MEDLINE | ID: mdl-37318763

ABSTRACT

Echovirus 11 (E11) has recently been associated with a series of nine neonatal cases of severe hepatitis in France. Here, we present severe hepatitis caused by E11 in a pair of twins. In one of the neonates, the clinical picture evolved to fulminant hepatitis. The E11 genome showed 99% nucleotide identity with E11 strains reported in the cases in France. Rapid genome characterisation using next generation sequencing is essential to identify new and more pathogenetic variants.


Subject(s)
Echovirus Infections , Hepatitis A , Hepatitis , Massive Hepatic Necrosis , Infant, Newborn , Humans , Male , Italy/epidemiology , France/epidemiology , Enterovirus B, Human/genetics , Echovirus Infections/diagnosis , Echovirus Infections/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...