Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 181: 104967, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31303342

ABSTRACT

BACKGROUND AND OBJECTIVE: Healthcare 4.0 is being hailed as the current industrial revolution in the healthcare domain, dealing with billions of heterogeneous IoT data sources that are connected over the Internet and aim at providing real-time health-related information for citizens and patients. It is of major importance to utilize an automated way to identify the quality levels of these data sources, in order to obtain reliable health data. METHODS: In this manuscript, we demonstrate an innovative mechanism for assessing the quality of various datasets in correlation with the quality of the corresponding data sources. For that purpose, the mechanism follows a 5-stepped approach through which the available data sources are detected, identified and connected to health platforms, where finally their data is gathered. Once the data is obtained, the mechanism cleans it and correlates it with the quality measurements that are captured from each different data source, in order to finally decide whether these data sources are being characterized as qualitative or not, and thus their data is kept for further analysis. RESULTS: The proposed mechanism is evaluated through an experiment using a sample of 18 existing heterogeneous medical data sources. Based on the captured results, we were able to identify a data source of unknown type, recognizing that it was a body weight scale. Afterwards, we were able to find out that the API method that was responsible for gathering data out of this data source was the getMeasurements() method, while combining both the body weight scale's quality and its derived data quality, we could decide that this data source was considered as qualitative enough. CONCLUSIONS: By taking full advantage of capturing the quality of a data source through measuring and correlating both the data source's quality itself and the quality of its derived data, the proposed mechanism provides efficient results, being able to ensure end-to-end both data sources and data quality.


Subject(s)
Data Accuracy , Data Analysis , Information Storage and Retrieval/standards , Medical Informatics/methods , Body Weight , Data Collection , Decision Making , Delivery of Health Care , Female , Humans , Male , Observer Variation , Registries , Reproducibility of Results
2.
Sensors (Basel) ; 19(9)2019 Apr 27.
Article in English | MEDLINE | ID: mdl-31035612

ABSTRACT

It is an undeniable fact that Internet of Things (IoT) technologies have become a milestone advancement in the digital healthcare domain, since the number of IoT medical devices is grown exponentially, and it is now anticipated that by 2020 there will be over 161 million of them connected worldwide. Therefore, in an era of continuous growth, IoT healthcare faces various challenges, such as the collection, the quality estimation, as well as the interpretation and the harmonization of the data that derive from the existing huge amounts of heterogeneous IoT medical devices. Even though various approaches have been developed so far for solving each one of these challenges, none of these proposes a holistic approach for successfully achieving data interoperability between high-quality data that derive from heterogeneous devices. For that reason, in this manuscript a mechanism is produced for effectively addressing the intersection of these challenges. Through this mechanism, initially, the collection of the different devices' datasets occurs, followed by the cleaning of them. In sequel, the produced cleaning results are used in order to capture the levels of the overall data quality of each dataset, in combination with the measurements of the availability of each device that produced each dataset, and the reliability of it. Consequently, only the high-quality data is kept and translated into a common format, being able to be used for further utilization. The proposed mechanism is evaluated through a specific scenario, producing reliable results, achieving data interoperability of 100% accuracy, and data quality of more than 90% accuracy.


Subject(s)
Data Accuracy , Delivery of Health Care/methods , Humans , Internet , Monitoring, Physiologic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...