Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 72(1): 638-44, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16391101

ABSTRACT

The intramolecular distribution of nitrogen isotopes in N2O is an emerging tool for defining the relative importance of microbial sources of this greenhouse gas. The application of intramolecular isotopic distributions to evaluate the origins of N2O, however, requires a foundation in laboratory experiments in which individual production pathways can be isolated. Here we evaluate the site preferences of N2O produced during hydroxylamine oxidation by ammonia oxidizers and by a methanotroph, ammonia oxidation by a nitrifier, nitrite reduction during nitrifier denitrification, and nitrate and nitrite reduction by denitrifiers. The site preferences produced during hydroxylamine oxidation were 33.5 +/- 1.2 per thousand, 32.5 +/- 0.6 per thousand, and 35.6 +/- 1.4 per thousand for Nitrosomonas europaea, Nitrosospira multiformis, and Methylosinus trichosporium, respectively, indicating similar site preferences for methane and ammonia oxidizers. The site preference of N2O from ammonia oxidation by N. europaea (31.4 +/- 4.2 per thousand) was similar to that produced during hydroxylamine oxidation (33.5 +/- 1.2 per thousand) and distinct from that produced during nitrifier denitrification by N. multiformis (0.1 +/- 1.7 per thousand), indicating that isotopomers differentiate between nitrification and nitrifier denitrification. The site preferences of N2O produced during nitrite reduction by the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens (-0.6 +/- 1.9 per thousand and -0.5 +/- 1.9 per thousand, respectively) were similar to those during nitrate reduction (-0.5 +/- 1.9 per thousand and -0.5 +/- 0.6 per thousand, respectively), indicating no influence of either substrate on site preference. Site preferences of approximately 33 per thousand and approximately 0 per thousand are characteristic of nitrification and denitrification, respectively, and provide a basis to quantitatively apportion N2O.


Subject(s)
Bacteria/metabolism , Nitrogen Isotopes/metabolism , Nitrous Oxide/metabolism , Ammonia/metabolism , Hydroxylamine/metabolism , Methane/metabolism , Methylococcus capsulatus/metabolism , Nitrates/metabolism , Nitrites/metabolism , Nitrosomonas europaea/metabolism , Oxidation-Reduction , Pseudomonas/metabolism
2.
Biochim Biophys Acta ; 1003(3): 293-300, 1989 Jun 28.
Article in English | MEDLINE | ID: mdl-2472835

ABSTRACT

Cloned cDNAs encoding a number of enzymes involved in cholesterol biosynthesis as well as extracellular and intracellular lipid transport were used to compare the developmental maturation of these biologic functions in the fetal and neonatal rat and human liver. The results of RNA blot hybridization analyses indicate that steady-state levels of rat HMG-CoA synthase, HMG-CoA reductase and prenyl transferase mRNAs are highest in late fetal life and undergo precipitous (up to 80-fold) co-ordinate reductions immediately after parturition. These changes reflect the ability of the fetal rat liver to produce large quantities of cholesterol as well as the repression of this function during the suckling period in response to exogenous dietary cholesterol. Striking co-ordinate patterns of HMG-CoA synthase, reductase and prenyl-transferase mRNA accumulation were also observed in four extrahepatic rat tissues (brain, lung, intestine and kidney) during the perinatal period. The concentrations of all three mRNAs in the 8-week-old human fetal liver are similar to those observed throughout subsequent intrauterine development with less than 2-fold changes noted between the 8th through 25th weeks of gestation. Analysis of the levels of human apo AI, apo AII, apo B and liver fatty acid binding protein mRNAs during this period and in newborn liver specimens also indicated less than 2-3-fold changes. These observations suggest that the 8-week human liver has achieved a high degree of biochemical differentiation with respect to functions involved in lipid metabolism/transport which may be comparable to that present in 19-21 day fetal rat liver. Further analysis of human and rat fetal liver RNAs using cloned cDNAs should permit construction of a developmental time scale correlating hepatic biochemical differentiation to be constructed between these two mammalian species.


Subject(s)
Cholesterol/biosynthesis , Dimethylallyltranstransferase/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl-CoA Synthase/genetics , Lipid Metabolism , Liver/physiology , Oxo-Acid-Lyases/genetics , Transferases/genetics , Animals , Biological Transport , Blotting, Northern , Brain/physiology , Gene Expression Regulation , Humans , Intestines/physiology , Kidney/physiology , Liver/embryology , Liver/metabolism , Rats , alpha-Fetoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...