Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
3.
Elife ; 122023 01 31.
Article in English | MEDLINE | ID: mdl-36718998

ABSTRACT

Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, ß, and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.


Subject(s)
Cerebral Cortex , Visual Perception , Frontal Lobe , Theta Rhythm , Periodicity , Photic Stimulation
4.
PLoS Comput Biol ; 17(4): e1008783, 2021 04.
Article in English | MEDLINE | ID: mdl-33852573

ABSTRACT

Current hypotheses suggest that speech segmentation-the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing-is executed by a hierarchy of oscillators in auditory cortex. Theta (∼3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ∼1 Hz), requires "flexible" theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech.


Subject(s)
Neurons/physiology , Synapses/physiology , Acoustic Stimulation/methods , Auditory Cortex/physiology , Humans
5.
PLoS Comput Biol ; 16(2): e1007300, 2020 02.
Article in English | MEDLINE | ID: mdl-32097404

ABSTRACT

Striatal oscillatory activity is associated with movement, reward, and decision-making, and observed in several interacting frequency bands. Local field potential recordings in rodent striatum show dopamine- and reward-dependent transitions between two states: a "spontaneous" state involving ß (∼15-30 Hz) and low γ (∼40-60 Hz), and a state involving θ (∼4-8 Hz) and high γ (∼60-100 Hz) in response to dopaminergic agonism and reward. The mechanisms underlying these rhythmic dynamics, their interactions, and their functional consequences are not well understood. In this paper, we propose a biophysical model of striatal microcircuits that comprehensively describes the generation and interaction of these rhythms, as well as their modulation by dopamine. Building on previous modeling and experimental work suggesting that striatal projection neurons (SPNs) are capable of generating ß oscillations, we show that networks of striatal fast-spiking interneurons (FSIs) are capable of generating δ/θ (ie, 2 to 6 Hz) and γ rhythms. Under simulated low dopaminergic tone our model FSI network produces low γ band oscillations, while under high dopaminergic tone the FSI network produces high γ band activity nested within a δ/θ oscillation. SPN networks produce ß rhythms in both conditions, but under high dopaminergic tone, this ß oscillation is interrupted by δ/θ-periodic bursts of γ-frequency FSI inhibition. Thus, in the high dopamine state, packets of FSI γ and SPN ß alternate at a δ/θ timescale. In addition to a mechanistic explanation for previously observed rhythmic interactions and transitions, our model suggests a hypothesis as to how the relationship between dopamine and rhythmicity impacts motor function. We hypothesize that high dopamine-induced periodic FSI γ-rhythmic inhibition enables switching between ß-rhythmic SPN cell assemblies representing the currently active motor program, and thus that dopamine facilitates movement in part by allowing for rapid, periodic shifts in motor program execution.


Subject(s)
Brain Waves , Corpus Striatum/physiology , Action Potentials/physiology , Animals , Biophysics , Dopamine/physiology , Models, Neurological
6.
Proc Natl Acad Sci U S A ; 116(17): 8564-8569, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30962383

ABSTRACT

Classical accounts of biased competition require an input bias to resolve the competition between neuronal ensembles driving downstream processing. However, flexible and reliable selection of behaviorally relevant ensembles can occur with unbiased stimulation: striatal D1 and D2 spiny projection neurons (SPNs) receive balanced cortical input, yet their activity determines the choice between GO and NO-GO pathways in the basal ganglia. We here present a corticostriatal model identifying three mechanisms that rely on physiological asymmetries to effect rate- and time-coded biased competition in the presence of balanced inputs. First, tonic input strength determines which one of the two SPN phenotypes exhibits a higher mean firing rate. Second, low-strength oscillatory inputs induce higher firing rate in D2 SPNs but higher coherence between D1 SPNs. Third, high-strength inputs oscillating at distinct frequencies can preferentially activate D1 or D2 SPN populations. Of these mechanisms, only the latter accommodates observed rhythmic activity supporting rule-based decision making in prefrontal cortex.


Subject(s)
Models, Neurological , Neural Pathways/physiology , Neurons/physiology , Prefrontal Cortex/physiology , Corpus Striatum/physiology
7.
Sci Rep ; 8(1): 11588, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30072757

ABSTRACT

NMDAR antagonism alters mesolimbic, hippocampal, and cortical function, acutely reproducing the positive, cognitive, and negative symptoms of schizophrenia. These physiological and behavioral effects may depend differentially on NMDAR subtype- and region-specific effects. The dramatic electrophysiological signatures of NMDAR blockade in rodents include potentiated high frequency oscillations (HFOs, ∼140 Hz), likely generated in mesolimbic structures, and increased HFO phase-amplitude coupling (PAC), a phenomenon related to goal-directed behavior and dopaminergic tone. This study examined the impact of subtype-specific NMDAR antagonism on HFOs and PAC. We found that positive-symptom-associated NR2A-preferring antagonism (NVP-AAM077), but not NR2B-specific antagonism (Ro25-6985) or saline control, replicated increases in HFO power seen with nonspecific antagonism (MK-801). However, PAC following NR2A-preferring antagonism was distinct from all other conditions. While θ-HFO PAC was prominent or potentiated in other conditions, NVP-AAM077 increased δ-HFO PAC and decreased θ-HFO PAC. Furthermore, active wake epochs exhibiting narrowband frontal δ oscillations, and not broadband sleep-associated δ, selectively exhibited δ-HFO coupling, while paradoxical sleep epochs having a high CA1 θ to frontal δ ratio selectively exhibited θ-HFO coupling. Our results suggest: (1) NR2A-preferring antagonism induces oscillopathies reflecting frontal hyperfunction and hippocampal hypofunction; and (2) HFO PAC indexes cortical vs. hippocampal control of mesolimbic circuits.


Subject(s)
Frontal Lobe , Hippocampus , Quinoxalines/pharmacology , Receptors, N-Methyl-D-Aspartate , Schizophrenia , Theta Rhythm/drug effects , Animals , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontal Lobe/physiopathology , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Rats , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Schizophrenia/pathology , Schizophrenia/physiopathology
8.
Eur J Neurosci ; 48(8): 2857-2868, 2018 10.
Article in English | MEDLINE | ID: mdl-29528521

ABSTRACT

Cortico-basal ganglia-thalamic (CBT) ß oscillations (15-30 Hz) are elevated in Parkinson's disease and correlated with movement disability. To date, no experimental paradigm outside of loss of dopamine has been able to specifically elevate ß oscillations in the CBT loop. Here, we show that activation of striatal cholinergic receptors selectively increased ß oscillations in mouse striatum and motor cortex. In individuals showing simultaneous ß increases in both striatum and M1, ß partial directed coherence (PDC) increased from striatum to M1 (but not in the reverse direction). In individuals that did not show simultaneous ß increases, ß PDC increased from M1 to striatum (but not in the reverse direction), and M1 was characterized by persistent ß-high frequency oscillation phase-amplitude coupling. Finally, the direction of ß PDC distinguished between ß sub-bands. This suggests that (1) striatal cholinergic tone exerts state-dependent and frequency-selective control over CBT ß power and coordination; (2) ongoing rhythmic dynamics can determine whether elevated ß oscillations are expressed in striatum and M1; and (3) altered striatal cholinergic tone differentially modulates distinct ß sub-bands.


Subject(s)
Beta Rhythm/physiology , Corpus Striatum/metabolism , Motor Cortex/metabolism , Receptors, Cholinergic/metabolism , Animals , Beta Rhythm/drug effects , Cholinergic Agonists/pharmacology , Corpus Striatum/drug effects , Female , Male , Mice , Mice, Inbred C57BL , Motor Cortex/drug effects , Neural Pathways/drug effects , Neural Pathways/metabolism , Time Factors
9.
Front Neuroinform ; 12: 10, 2018.
Article in English | MEDLINE | ID: mdl-29599715

ABSTRACT

DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.

11.
Biol Psychiatry ; 77(12): 1020-30, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25850619

ABSTRACT

In recent years, schizophrenia research has focused on inhibitory interneuron dysfunction at the level of neurobiology and on cognitive impairments at the psychological level. Reviewing both experimental and computational findings, we show how the temporal structure of the activity of neuronal populations, exemplified by brain rhythms, can begin to bridge these levels of complexity. Oscillations in neuronal activity tie the pathophysiology of schizophrenia to alterations in local processing and large-scale coordination, and these alterations in turn can lead to the cognitive and perceptual disturbances observed in schizophrenia.


Subject(s)
Brain Waves/physiology , Brain/physiopathology , Neural Inhibition , Schizophrenia/physiopathology , Schizophrenic Psychology , Animals , GABAergic Neurons/physiology , Genetic Predisposition to Disease , Humans , Interneurons/physiology , Schizophrenia/genetics
12.
J R Soc Interface ; 11(96)2014 Jul 06.
Article in English | MEDLINE | ID: mdl-24829282

ABSTRACT

Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation.


Subject(s)
Circadian Rhythm/physiology , Motor Activity , Animals , Photoperiod , Rats , Rats, Wistar , Suprachiasmatic Nucleus/physiology , Work Schedule Tolerance/physiology
13.
J Neurosci Methods ; 226: 15-32, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24452055

ABSTRACT

BACKGROUND: Phase-amplitude coupling (PAC)--the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm - has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. NEW METHOD: To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques - such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. COMPARISON WITH EXISTING METHODS: We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. CONCLUSIONS: Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms.


Subject(s)
Brain/physiology , Electroencephalography/methods , Signal Processing, Computer-Assisted , Animals , Artifacts , Computer Simulation , Fourier Analysis , Mice , Models, Neurological , Polysomnography/methods , Sleep, REM/physiology , Time Factors
14.
Respir Physiol Neurobiol ; 189(1): 27-33, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23811194

ABSTRACT

Aging and disease are accompanied with a reduction of complex variability in the temporal patterns of heart rate. This reduction has been attributed to a break down of the underlying regulatory feedback mechanisms that maintain a homeodynamic state. Previous work has established the utility of entropy as an index of disorder, for quantification of changes in heart rate complexity. However, questions remain regarding the origin of heart rate complexity and the mechanisms involved in its reduction with aging and disease. In this work we use a newly developed technique based on the concept of band-limited transfer entropy to assess the aging-related changes in contribution of respiration and blood pressure to entropy of heart rate at different frequency bands. Noninvasive measurements of heart beat interval, respiration, and systolic blood pressure were recorded from 20 young (21-34 years) and 20 older (68-85 years) healthy adults. Band-limited transfer entropy analysis revealed a reduction in high-frequency contribution of respiration to heart rate complexity (p<0.001) with normal aging, particularly in men. These results have the potential for dissecting the relative contributions of respiration and blood pressure-related reflexes to heart rate complexity and their degeneration with normal aging.


Subject(s)
Aging/physiology , Blood Pressure/physiology , Entropy , Heart Rate/physiology , Respiratory Physiological Phenomena , Adult , Aged , Aged, 80 and over , Electrocardiography , Female , Humans , Male , Plethysmography, Impedance , Respiration , Sex Factors , Young Adult
15.
Biol Rev Camb Philos Soc ; 88(4): 873-94, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23573942

ABSTRACT

Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system's role in fractal regulation.


Subject(s)
Biological Clocks/physiology , Central Nervous System/physiology , Fractals , Animals
16.
PLoS One ; 7(11): e48927, 2012.
Article in English | MEDLINE | ID: mdl-23185285

ABSTRACT

The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ~24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales--from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.


Subject(s)
Fractals , Nerve Net/physiology , Neurons/physiology , Suprachiasmatic Nucleus/physiology , Afferent Pathways/physiology , Afferent Pathways/radiation effects , Animals , Circadian Rhythm/physiology , Circadian Rhythm/radiation effects , Light , Mice , Mice, Inbred C57BL , Nerve Net/radiation effects , Neurons/radiation effects , Photoperiod , Rats , Rats, Wistar , Suprachiasmatic Nucleus/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...