Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Dev Biol ; 127(1): 1-11, 1988 May.
Article in English | MEDLINE | ID: mdl-3282936

ABSTRACT

Using immunofluorescence procedures with specific polyclonal and monoclonal antimyosin antibodies we have found that embryonic and neonatal myosin heavy chains (MHCs), which in rat skeletal muscle disappear during the first weeks after birth, are reexpressed in adult muscle after denervation. Reactivity for embryonic and neonatal MHCs was detected in some fibers as early as 3 days after denervation, became more evident by 7 days, and occurred exclusively in the type 2A fiber population. Paralysis of innervated muscles by tetrodotoxin block of the sciatic nerve also resulted in the reappearance of embryonic and neonatal MHCs in type 2A fibers. Significant variation in the degree of immunoreactivity was observed in different segments of the same muscle fiber, suggesting that coordination of muscle fiber nuclei in the control of myosin heavy chain gene expression is partially lost following denervation.


Subject(s)
Animals, Newborn/metabolism , Fetus/metabolism , Muscle Denervation , Muscles/metabolism , Myosins/metabolism , Paralysis/metabolism , Aging/metabolism , Animals , Fluorescent Antibody Technique , Muscles/embryology , Muscles/innervation , Paralysis/chemically induced , Rats , Rats, Inbred Strains , Sciatic Nerve/drug effects , Tetrodotoxin/pharmacology
3.
Eur J Biochem ; 162(2): 239-49, 1987 Jan 15.
Article in English | MEDLINE | ID: mdl-3803384

ABSTRACT

The mechanism by which a number of agents such as hydroperoxides, inorganic phosphate, azodicarboxylic acid bis(dimethylamide) (diamide), 2-methyl-1,4-naphthoquinone (menadione) and aging, induce Ca2+ release from rat liver mitochondria has been analyzed by following Ca2+ fluxes in parallel with K+ fluxes, matrix swelling and triphenylmethylphosphonium fluxes (as an index of transmembrane potential). Addition of hydroperoxides causes a cycle of Ca2+ efflux and reuptake and an almost parallel cycle of delta psi depression. The hydroperoxide-induced delta psi depression is biphasic. The first phase is rapid and insensitive to ATP and is presumably due to activation of the transhydrogenase reaction during the metabolization of the hydroperoxides. The second phase is slow and markedly inhibited by ATP and presumably linked to the activation of a Ca2+-dependent reaction. The slow phase of delta psi depression is paralleled by matrix K+ release and mitochondrial swelling. Nupercaine and ATP reduce or abolish also K+ release and swelling. Inorganic phosphate, diamide, menadione or aging also cause a process of Ca2+ efflux which is paralleled by a slow delta psi depression, K+ release and swelling. All these processes are reduced or abolished by Nupercaine and ATP. The slow delta psi depression following addition of hydroperoxide and diamide is largely reversible at low Ca2+ concentration but tends to become irreversible at high Ca2+ concentration. The delta psi depression increases with the increase of hydroperoxide, diamide and menadione concentration, but is irreversible only in the latter case. Addition of ruthenium red before the hydroperoxides reduces the extent of the slow but not of the rapid phase of delta psi depression. Addition of ruthenium red after the hydroperoxides results in a slow increase of delta psi. Such an effect differs from the rapid increase of delta psi due to ruthenium-red-induced inhibition of Ca2+ cycling in A23187-supplemented mitochondria. Metabolization of hydroperoxides and diamide is accompanied by a cycle of reversible pyridine nucleotide oxidation. Above certain hydroperoxide and diamide concentrations the pyridine nucleotide oxidation becomes irreversible. Addition of menadione results always in an irreversible nucleotide oxidation. The kinetic correlation between Ca2+ efflux and delta psi decline suggests that hydroperoxides, diamide, menadione, inorganic phosphate and aging cause, in the presence of Ca2+, an increase of the permeability for protons of the inner mitochondrial membrane. This is followed by Ca2+ efflux through a pathway which is not the H+/Ca2+ exchange.


Subject(s)
Calcium/pharmacology , Intracellular Membranes/metabolism , Mitochondria, Liver/metabolism , Peroxides/pharmacology , Phosphates/pharmacology , Sulfhydryl Reagents/pharmacology , Animals , Calcium/metabolism , Intracellular Membranes/drug effects , Kinetics , Mitochondria, Liver/drug effects , Oxidation-Reduction , Permeability , Potassium/metabolism , Rats , Submitochondrial Particles/drug effects , Submitochondrial Particles/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL