Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28935164

ABSTRACT

Molting is induced in decapod crustaceans via multiple leg autotomy (MLA) or eyestalk ablation (ESA). MLA removes five or more walking legs, which are regenerated and become functional appendages at ecdysis. ESA eliminates the primary source of molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), which suppress the production of molting hormones (ecdysteroids) from the molting gland or Y-organ (YO). Both MLA and ESA are effective methods for molt induction in Gecarcinus lateralis. However, some G. lateralis individuals are refractory to MLA, as they fail to complete ecdysis by 12weeks post-MLA; these animals are in the "blocked" condition. Quantitative polymerase chain reaction was used to quantify mRNA levels of neuropeptide and mechanistic target of rapamycin (mTOR) signaling genes in YO, eyestalk ganglia (ESG), thoracic ganglion (TG), and brain of intact and blocked animals. Six of the seven neuropeptide signaling genes, three of four mTOR signaling genes, and Gl-elongation factor 2 (EF2) mRNA levels were significantly higher in the ESG of blocked animals. Gl-MIH and Gl-CHH mRNA levels were higher in the TG and brain of blocked animals and levels increased in both control and blocked animals in response to ESA. By contrast, mRNA levels of Gl-EF2 and five of the 10 MIH signaling pathway genes in the YO were two to four orders of magnitude higher in blocked animals compared to controls. These data suggest that increased MIH and CHH synthesis in the ESG contributes to the prevention of molt induction by MLA in blocked animals. The up-regulation of MIH signaling genes in the YO of blocked animals suggests that the YO is more sensitive to MIH produced in the ESG, as well as MIH produced in brain and TG of ESA animals. Both the up-regulation of MIH signaling genes in the YO and of Gl-MIH and Gl-CHH in the ESG, TG, and brain appear to contribute to some G. lateralis individuals being refractory to MLA and ESA.


Subject(s)
Arthropod Proteins/metabolism , Brachyura/physiology , Exocrine Glands/innervation , Ganglia, Invertebrate/metabolism , Gene Expression Regulation, Developmental , Invertebrate Hormones/metabolism , Models, Neurological , Nerve Tissue Proteins/metabolism , Animals , Arthropod Proteins/genetics , Atlantic Ocean , Brachyura/growth & development , Brain/growth & development , Brain/metabolism , Dominican Republic , Ecdysteroids/biosynthesis , Ecdysteroids/metabolism , Exocrine Glands/growth & development , Exocrine Glands/metabolism , Eye/growth & development , Eye/innervation , Eye/metabolism , Ganglia, Invertebrate/growth & development , Invertebrate Hormones/genetics , Male , Molting , Nerve Tissue Proteins/genetics , Organ Specificity , Peptide Elongation Factors/genetics , Peptide Elongation Factors/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Thoracic Cavity/growth & development , Thoracic Cavity/innervation , Thoracic Cavity/metabolism
2.
Genome Announc ; 5(21)2017 May 25.
Article in English | MEDLINE | ID: mdl-28546488

ABSTRACT

Oceanospirillum linum ATCC 11336T is an aerobic, bipolar-tufted gammaproteobacterium first isolated in the Long Island Sound in the 1950s. This announcement offers a genome sequence for O. linum ATCC 11336T, which has a predicted genome size of 3,782,189 bp (49.13% G+C content) containing 3,540 genes and 3,361 coding sequences.

3.
Genome Announc ; 5(21)2017 May 25.
Article in English | MEDLINE | ID: mdl-28546489

ABSTRACT

Oceanospirillum multiglobuliferum ATCC 33336T is a motile gammaproteobacterium with bipolar tufted flagella, noted for its low salt tolerance compared to other marine spirilla. This strain was originally isolated from the putrid infusions of Crassostrea gigas near Hiroshima, Japan. This paper presents a draft genome sequence for O. multiglobuliferum ATCC 33336T.

4.
Article in English | MEDLINE | ID: mdl-27989866

ABSTRACT

In decapod crustaceans, molting is controlled by the pulsatile release of molt-inhibiting hormone (MIH) from neurosecretory cells in the X-organ/sinus gland (XO/SG) complex in the eyestalk ganglia (ESG). A drop in MIH release triggers molting by activating the molting gland or Y-organ (YO). Post-transcriptional mechanisms ultimately control MIH levels in the hemolymph. Neurotransmitter-mediated electrical activity controls Ca2+-dependent vesicular release of MIH from the SG axon terminals, which may be modulated by nitric oxide (NO). In green shore crab, Carcinus maenas, nitric oxide synthase (NOS) protein and NO are present in the SG. Moreover, C. maenas are refractory to eyestalk ablation (ESA), suggesting other regions of the nervous system secrete sufficient amounts of MIH to prevent molting. By contrast, ESA induces molting in the blackback land crab, Gecarcinus lateralis. Double-label immunofluorescence microscopy and quantitative polymerase chain reaction were used to localize and quantify MIH and NOS proteins and transcripts, respectively, in the ESG, brain, and thoracic ganglion (TG) of C. maenas and G. lateralis. In ESG, MIH- and NOS-immunopositive cells were closely associated in the SG of both species; confocal microscopy showed that NOS was localized in cells adjacent to MIH-positive axon terminals. In brain, MIH-positive cells were located in a small number of cells in the olfactory lobe; no NOS immunofluorescence was detected. In TG, MIH and NOS were localized in cell clusters between the segmental nerves. In G. lateralis, Gl-MIH and Gl-crustacean hyperglycemic hormone (CHH) mRNA levels were ~105-fold higher in ESG than in brain or TG of intermolt animals, indicating that the ESG is the primary source of these neuropeptides. Gl-NOS and Gl-elongation factor (EF2) mRNA levels were also higher in the ESG. Molt stage had little or no effect on CHH, NOS, NOS-interacting protein (NOS-IP), membrane Guanylyl Cyclase-II (GC-II), and NO-independent GC-III expression in the ESG of both species. By contrast, MIH and NO receptor GC-I beta subunit (GC-Iß) transcripts were increased during premolt and postmolt stages in G. lateralis, but not in C. maenas. MIH immunopositive cells in the brain and TG may be a secondary source of MIH; the release of MIH from these sources may contribute to the difference between the two species in response to ESA. The MIH-immunopositive cells in the TG may be the source of an MIH-like factor that mediates molt inhibition by limb bud autotomy. The association of MIH- and NOS-labeled cells in the ESG and TG suggests that NO may modulate MIH release. A model is proposed in which NO-dependent activation of GC-I inhibits Ca2+-dependent fusion of MIH vesicles with the nerve terminal membrane; the resulting decrease in MIH activates the YO and the animal enters premolt.


Subject(s)
Arthropod Proteins/metabolism , Brachyura/physiology , Central Nervous System/metabolism , Gene Expression Regulation, Developmental , Invertebrate Hormones/metabolism , Neurons/metabolism , Nitric Oxide Synthase/metabolism , Animals , Aquaculture , Arthropod Proteins/genetics , Atlantic Ocean , Brachyura/growth & development , California , Central Nervous System/cytology , Central Nervous System/enzymology , Dominican Republic , Eye , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/enzymology , Ganglia, Invertebrate/metabolism , Invertebrate Hormones/genetics , Male , Molting , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/enzymology , Nitric Oxide Synthase/genetics , Olfactory Cortex/cytology , Olfactory Cortex/enzymology , Olfactory Cortex/metabolism , Organ Specificity , Pacific Ocean , Species Specificity , Thorax
5.
Article in English | MEDLINE | ID: mdl-26689334

ABSTRACT

In decapod crustaceans, arthropod steroid hormones or ecdysteroids regulate molting. These hormones are synthesized and released from a pair of molting glands called the Y-organs (YO). Cyclic nucleotide, mTOR, and TGFß/Smad signaling pathways mediate molt cycle-dependent phase transitions in the YO. To further identify the genes involved in the regulation of molting, a YO transcriptome was generated from three biological replicates of intermolt blackback land crab, Gecarcinus lateralis. Illumina sequencing of cDNA libraries generated 227,811,829 100-base pair (bp) paired-end reads; following trimming, 90% of the reads were used for further analyses. The trimmed reads were assembled de novo using Trinity software to generate 288,673 contigs with a mean length of 872 bp and a median length of 1842 bp. Redundancy among contig sequences was reduced by CD-HIT-EST, and the output constituted the baseline transcriptome database. Using Bowtie2, 92% to 93% of the reads were mapped back to the transcriptome. Individual contigs were annotated using BLAST, HMMER, TMHMM, SignalP, and Trinotate, resulting in assignments of 20% of the contigs. Functional and pathway annotations were carried out via gene ontology (GO) and KEGG orthology (KO) analyses; 58% and 44% of the contigs with BLASTx hits were assigned to GO and KO terms, respectively. The gene expression profile was similar to a crayfish YO transcriptome database, and the relative abundance of each contig was highly correlated among the three G. lateralis replicates. Signal transduction pathway orthologs were well represented, including those in the mTOR, TGFß, cyclic nucleotide, MAP kinase, calcium, VEGF, phosphatidylinositol, ErbB, Wnt, Hedgehog, Jak-STAT, and Notch pathways.


Subject(s)
Brachyura/genetics , Gene Expression Profiling , Molting/genetics , Animals , Brachyura/growth & development , DNA, Complementary , Endocrine Glands/metabolism , Sequence Alignment , Signal Transduction
6.
J Exp Biol ; 218(Pt 3): 353-62, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25452501

ABSTRACT

Molting in decapod crustaceans is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced in the X-organ (XO)/sinus gland (SG) complex of the eyestalk ganglia (ESG). Pulsatile release of MIH from the SG suppresses ecdysteroidogenesis by the molting gland or Y-organ (YO). The hypothesis is that nitric oxide (NO), a neuromodulator that controls neurotransmitter release at presynaptic membranes, depresses the frequency and/or amount of MIH pulses to induce molting. NO synthase (NOS) mRNA was present in Carcinus maenas ESG and other tissues and NOS protein was present in the SG. A copper based ligand (CuFL), which reacts with NO to form a highly fluorescent product (NO-FL), was used to image NO in the ESG and SG and quantify the effects of NO scavenger (cPTIO), NOS inhibitor (l-NAME), and sodium azide (NaN3) on NO production in the SG. Pre-incubation with cPTIO prior to CuFL loading decreased NO-FL fluorescence ~30%; including l-NAME had no additional effect. Incubating SG with l-NAME during pre-incubation and loading decreased NO-FL fluorescence ~40%, indicating that over half of the NO release was not directly dependent on NOS activity. Azide, which reacts with NO-binding metal groups in proteins, reduced NO-FL fluorescence to near background levels without extensive cell death. Spectral shift analysis showed that azide displaced NO from a soluble protein in SG extract. These data suggest that the SG contains NO-binding protein(s) that sequester NO and releases it over a prolonged period. This NO release may modulate neuropeptide secretion from the axon termini in the SG.


Subject(s)
Brachyura/physiology , Molting/physiology , Nitric Oxide/biosynthesis , Animals , Arthropod Proteins/metabolism , Brachyura/growth & development , Exocrine Glands/metabolism , Gene Expression Regulation , Male , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase/metabolism , RNA, Messenger/metabolism , Signal Transduction , Sodium Azide/pharmacology
7.
Mol Pharmacol ; 82(3): 464-72, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22689561

ABSTRACT

Critical functions of the vascular endothelium are regulated by changes in intracellular [Ca(2+)]. Endothelial dysfunction is tightly associated with cardiovascular disease, and improved understanding of Ca(2+) entry pathways in these cells will have a significant impact on human health. However, much about Ca(2+) influx channels in endothelial cells remains unknown because they are difficult to study using conventional patch-clamp electrophysiology. Here we describe a novel, highly efficient method for recording and analyzing Ca(2+)-permeable channel activity in primary human endothelial cells using a unique combination of total internal reflection fluorescence microscopy (TIRFM), custom software-based detection, and selective pharmacology. Our findings indicate that activity of the vanilloid (V) transient receptor potential (TRP) channel TRPV4 can be rapidly recorded and characterized at the single-channel level using this method, providing novel insight into channel function. Using this method, we show that although TRPV4 protein is evenly distributed throughout the plasma membrane, most channels are silent even during maximal stimulation with the potent TRPV4 agonist N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A). Furthermore, our findings indicate that GSK1016790A acts by recruiting previously inactive channels, rather than through increasing elevation of basal activity.


Subject(s)
Endothelium, Vascular/metabolism , Leucine/analogs & derivatives , Microscopy, Fluorescence/methods , Sulfonamides/pharmacology , TRPV Cation Channels/metabolism , Calcium/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Endothelial Cells/chemistry , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Humans , Leucine/pharmacology , TRPV Cation Channels/agonists
8.
J Exp Biol ; 215(Pt 4): 590-604, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22279066

ABSTRACT

Molt-induced claw muscle atrophy in decapod crustaceans facilitates exuviation and is coordinated by ecdysteroid hormones. There is a 4-fold reduction in mass accompanied by remodeling of the contractile apparatus, which is associated with an 11-fold increase in myofibrillar protein synthesis by the end of the premolt period. Loss of a walking limb or claw causes a loss of mass in the associated thoracic musculature; this unweighting atrophy occurs in intermolt and is ecdysteroid independent. Myostatin (Mstn) is a negative regulator of muscle growth in mammals; it suppresses protein synthesis, in part, by inhibiting the insulin/metazoan target of rapamycin (mTOR) signaling pathway. Signaling via mTOR activates translation by phosphorylating ribosomal S6 kinase (s6k) and 4E-binding protein 1. Rheb (Ras homolog enriched in brain), a GTP-binding protein, is a key activator of mTOR and is inhibited by Rheb-GTPase-activating protein (GAP). Akt protein kinase inactivates Rheb-GAP, thus slowing Rheb-GTPase activity and maintaining mTOR in the active state. We hypothesized that the large increase in global protein synthesis in claw muscle was due to regulation of mTOR activity by ecdysteroids, caused either directly or indirectly via Mstn. In the blackback land crab, Gecarcinus lateralis, a Mstn-like gene (Gl-Mstn) is downregulated as much as 17-fold in claw muscle during premolt and upregulated 3-fold in unweighted thoracic muscle during intermolt. Gl-Mstn expression in claw muscle is negatively correlated with hemolymph ecdysteroid level. Full-length cDNAs encoding Rheb orthologs from three crustacean species (G. lateralis, Carcinus maenas and Homarus americanus), as well as partial cDNAs encoding Akt (Gl-Akt), mTOR (Gl-mTOR) and s6k (Gl-s6k) from G. lateralis, were cloned. The effects of molting on insulin/mTOR signaling components were quantified in claw closer, weighted thoracic and unweighted thoracic muscles using quantitative polymerase chain reaction. Gl-Rheb mRNA levels increased 3.4-fold and 3.9-fold during premolt in claw muscles from animals induced to molt by eyestalk ablation (ESA) and multiple leg autotomy (MLA), respectively, and mRNA levels were positively correlated with hemolymph ecdysteroids. There was little or no effect of molting on Gl-Rheb expression in weighted thoracic muscle and no correlation of Gl-Rheb mRNA with ecdysteroid titer. There were significant changes in Gl-Akt, Gl-mTOR and Gl-s6k expression with molt stage. These changes were transient and were not correlated with hemolymph ecdysteroids. The two muscles differed in terms of the relationship between Gl-Rheb and Gl-Mstn expression. In thoracic muscle, Gl-Rheb mRNA was positively correlated with Gl-Mstn mRNA in both ESA and MLA animals. By contrast, Gl-Rheb mRNA in claw muscle was negatively correlated with Gl-Mstn mRNA in ESA animals, and no correlation was observed in MLA animals. Unweighting increased Gl-Rheb expression in thoracic muscle at all molt stages; the greatest difference (2.2-fold) was observed in intermolt animals. There was also a 1.3-fold increase in Gl-s6k mRNA level in unweighted thoracic muscle. These data indicate that the mTOR pathway is upregulated in atrophic muscles. Gl-Rheb, in particular, appears to play a role in the molt-induced increase in protein synthesis in the claw muscle.


Subject(s)
Brachyura/metabolism , GTP-Binding Proteins/metabolism , Muscle, Skeletal/metabolism , Myostatin/metabolism , TOR Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Brachyura/enzymology , Brachyura/genetics , Cloning, Molecular , Ecdysteroids/metabolism , GTP-Binding Proteins/biosynthesis , GTP-Binding Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , Male , Molecular Sequence Data , Molting/physiology , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Myostatin/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sequence Alignment , Shellfish , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...