Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 755: 109955, 2024 May.
Article in English | MEDLINE | ID: mdl-38460659

ABSTRACT

In this study, eighteen new ligands (B1-B18) containing a thiosemicarbazide core were synthesized and characterized in terms of physicochemical properties, molecular docking and in vitro biological activity. The structures of eleven ligands were investigated using X-Ray diffraction and Hirschfeld Surface analysis. To study the structure-activity relationship, the organic ligands contained pyridin-2-ylmethyl, pyridin-3-ylmethyl or pyridin-4-ylmethyl moieties and various substituents. Their pharmakokinetic profiles and molecular docking results suggest high potential as new drug candidates. The complexing ability of the selected organic ligands was also evaluated, yielding five new Cu(II) complexes (Cu(B1)Cl2, Cu(B4)Cl2, Cu(B10)Cl2, Cu(B17)Cl2, Cu(B18)Cl2). The obtained results suggest the formation of the polymeric structures. All organic ligands and Cu(II) complexes were tested for anticancer activity against prostate and melanoma cancer cells (PC-3, DU-145, LNCaP, A375, G-361, SK-MEL-28) and normal fibroblasts (BJ), as well as antimicrobial activity against six selected bateria strains. Among B1-B18 compounds, B3, B5, B9, B10, B12 and B14 exhibited cytotoxic activity. The studied Cu(II) complexes were in general more active, with Cu(B1)Cl2 exhibiting antincancer activity agains all three prostate cancer cells and Cu(B10)Cl2 reaching the IC50 value equal to 88 µM against G-361 melanoma cells. Several compounds also exhibited antimicrobial activity against gram-positive and gram-negative bacteria. It was found that the type of specific substituents, especially the presence of -chloro and -dichloro substituents had a greated impact on the cytotoxicity than the position of the nitrogen atom in the pyridylacetyl moiety.

2.
Toxicol In Vitro ; 95: 105741, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030050

ABSTRACT

Due to the variability and ability of tumor to mutate, as well as the heterogeneity of tumor tissue, such drugs are sought that would act selectively and multidirectionally on the cancer cell. Therefore, two newly synthesized semicarbazide structured substances were evaluated for anticancer properties in our study: 1a and 1b. In order to evaluate the cytotoxicity and selectivity of the tested compounds, MTT and Neutral Red uptake assay on cell lines (HEK293, LN229, 769-P, HepG2 and NCI-H1563) and cell cycle analysis were performed. Acute toxicity and cardiotoxicity were also evaluated in the zebrafish model. The tested compounds (1a, 1b) showed cytotoxic activity, with the greatest selectivity noted against the glioblastoma multiforme cell line (LN229). However, compound 1b showed stronger selective activity than 1a. Both of compounds were shown to significantly affect the M phase of the cell cycle. Whereas, the conducted toxicological examination of newly synthesized thiosemicarbazide derivates showed, that direct exposition of Danio rerio embryos to compound 1a, but not 1b, causes a concentration-dependent increase in developmental malformations, indicating possible teratogenic effects.


Subject(s)
Neoplasms , Zebrafish , Animals , Humans , HEK293 Cells , Semicarbazides/toxicity , Embryo, Nonmammalian
3.
Curr Med Chem ; 31(15): 2003-2020, 2024.
Article in English | MEDLINE | ID: mdl-37855341

ABSTRACT

Malignant melanoma is the rarest but most aggressive and deadly skin cancer. Melanoma is the result of a malignant transformation of melanocytes, which leads to their uncontrolled proliferation. Mutations in the mitogen-activated protein kinase (MAPK) pathway, which are crucial for the control of cellular processes, such as apoptosis, division, growth, differentiation, and migration, are one of its most common causes. BRAF kinase, as one of the known targets of this pathway, has been known for many years as a prominent molecular target in melanoma therapy, and the following mini-review outlines the state-of-the-art knowledge regarding its structure, mutations and mechanisms.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/pathology , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Mitogen-Activated Protein Kinases/metabolism , Apoptosis , Mutation , MAP Kinase Signaling System , Cell Line, Tumor
4.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139832

ABSTRACT

A series of N-Substituted 2-(benzenosulfonyl)-1-carbotioamide derivatives (WZ1-WZ4) were synthesized and characterized using spectral methods. A comprehensive activity study was performed for each compound. All compounds were tested for antibacterial activity. Moreover, in silico studies were carried out to determine the anticancer potential of the designed WZ1-WZ4 ligands. Based on molecular docking, aldehyde dehydrogenase was selected as a molecular target. The obtained data were compared with experimental data in vitro tests. Novel hybrids of the thiosemicarbazide scaffold and sulfonyl groups may have promising anticancer activity via the aldehyde dehydrogenase pathway. The best candidate for further studies appears to be WZ2, due to its superior selectivity in comparison to the other tested compounds.

5.
Molecules ; 28(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894587

ABSTRACT

Chromatographic methods, apart from in silico ones, are commonly used rapid techniques for the evaluation of certain properties of biologically active compounds used for their prediction of pharmacokinetic processes. Thiosemicarbazides are compounds possessing anticancer, antimicrobial, and other valuable biological activities. The aim of the investigation was to estimate the lipophilicity of 1-aryl-4-(phenoxy)acetylthiosemicarbazides, to predict their oral adsorption and the assessment of their % plasma-protein binding (%PPB). RP-HPLC chromatographic techniques with five diversified HPLC systems, including columns with surface-bonded octadecylsilanes (C-18), phosphatidylcholine (immobilized artificial membrane, IAM), cholesterol (Chol), and α1-acid glycoprotein (AGP) and human serum albumin (HSA), were applied. The measured lipophilicity of all investigated compounds was within the range recommended for potential drug candidates. However, some derivatives are strongly bonded to HSA (%PPB ≈ 100%), which may limit some pharmacokinetic processes. HPLC determined lipophilicity descriptors were compared with those obtained by various computational approaches.


Subject(s)
Biomimetics , Blood Proteins , Humans , Biomimetics/methods , Blood Proteins/metabolism , Chromatography, High Pressure Liquid/methods , Semicarbazides , Membranes, Artificial
6.
Toxicol Appl Pharmacol ; 475: 116634, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37482255

ABSTRACT

Numerous epidemiological studies report an increased risk of developing prostate cancer in patients with melanoma and an increased risk of developing melanoma in patients with prostate cancer. Based on our previous studies demonstrating the high anticancer activity of thiosemicarbazides with a phenoxy moiety, we designed nineteen phenoxyacetylthiosemicarbazide derivatives and four of them acting as potential dual-ligands for both cancers. All of the compounds were characterized by their melting points and 1H, 13C NMR and IR spectra. For selected compounds, X-ray investigations were carried out to confirm the synthesis pathway, identify the tautomeric form and intra- and intermolecular interaction in the crystalline state. The conformational preferences and electronic structure of molecules were investigated by theoretical calculation method. Lipophilicity of compounds (log kw) was determined using isocratic reversed phase/high pressure liquid chromatography RP-18. For the obtained compounds, in vitro tests were carried out on four melanoma cell lines (A375, G-361, SK-MEL2, SK-MEL28), four prostate cancer cell lines (PC-3, DU-145, LNCaP, VcaP) and a normal human fibroblast cell line (BJ). The most active compounds turned out to be F6. Cell cycle analysis, apoptosis detection, CellROX staining and mitochondrial membrane potential analysis were performed for the most sensitive cancer cells treated with most active compounds. DSC analysis was additionally performed for selected compounds to determine their purity, compatibility, and thermal stability. The process of prooxidation was proposed as a potential mechanism of anticancer activity.


Subject(s)
Antineoplastic Agents , Melanoma , Prostatic Neoplasms , Male , Humans , Antineoplastic Agents/therapeutic use , Ligands , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Apoptosis , Melanoma/drug therapy , Cell Proliferation
7.
Toxicol Appl Pharmacol ; 458: 116325, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36436567

ABSTRACT

The aim of the studies was to evaluate the antiproliferative potential against human tumor cell lines of newly synthetized derivatives containing 4-nitrophenyl group, as well as its impact on developmental toxicity in zebrafish model. We selected 1-(4-nitrobenzoyl)-4-ethylsemicarbazide (APS-1) and 1-[(4-nitrophenyl)acetyl]-4-hexyl-thiosemicarbazide (APS-18) for research. The antiproliferative properties of semicarbazide derivatives were assessed against human cancer cell lines derived from hepatocellular adenocarcinoma (HepG2), renal cell carcinoma (769-P), non-small cell lung cancer (NCI-H1563) and glioblastoma multiforme (LN229) in comparison to the physiological human embryonic kidney (HEK-293) cell line. The influence of the tested substances on the cell cycle and apoptosis was also evaluated. Fish embryo acute toxicity test (FET) was performed based on OECD Guidelines (Test No. 236), and was carried out for the first 5 days post fertilization. The following concentrations of APS-1 and APS-18 were tested: 125-2000 µM and 0.125-1000 µM, respectively. The presented studies on the antiproliferative properties of the new semicarbazide derivatives showed that the compounds APS-1 and APS-18 reduce the viability of human tumor lines. Particularly noteworthy is the strong and selective antiproliferative activity of APS-18 against all neoplastic cell lines, in particular against glioblastoma. Against this tumor line, the compound APS-1 showed an effective inhibitory effect. In the FET we noted that the direct exposure of zebrafish embryos to APS-1 and APS-18 in used range of concentration did not cause morphological abnormalities, including cardiotoxicity. On basis of obtained outcomes it could be concluded that APS-1 and APS-18 may constitute models for further research, design and synthesis of new, safer drugs with more favorable anticancer properties.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Zebrafish , HEK293 Cells , Antineoplastic Agents/toxicity , Cell Proliferation , Cell Line, Tumor , Semicarbazides/pharmacology , Structure-Activity Relationship , Molecular Structure
8.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012142

ABSTRACT

The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Chemistry, Pharmaceutical , Drug Design , Molecular Structure , Structure-Activity Relationship
9.
Int J Mol Sci ; 23(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012425

ABSTRACT

A new ligand 5-((1-methyl-pyrrol-2-yl) methyl)-4-(naphthalen-1-yl)-1,2,4-triazoline-3-thione (C15) and its metal complexes with formulae: Mn(C15)Cl2MeOH (1), Fe(C15)Cl2MeOH (2), Ni(C15)Cl2MeOH (3), Cu(C15)2Cl2 (4) and Zn(C15)4Cl2 (5) have been synthesized. The C15 ligand and complexes were characterized by NMR, elemental analysis, FT-IR, EPR, magnetic and TGA studies. The anticancer activities of the organic ligand (C15) and complexes (1-5) were evaluated against human colon adenocarcinoma (HT29) and human lung (A549) cancer cell lines. The complex (1) exhibited potential activity at concentration of 794.37 µM (A549) and 654.31 µM (HT29) in both cancer cells. The complex (3) showed significant activity against the HT29 cancer cell line with an IC50 value of 1064.05 µM. This article highlights some of the metals that have become important in the development of new coordination complexes and the treatment of cancer. Additionally, for C15, the toxicity was predicted by ADMET analysis and molecular docking.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Coordination Complexes , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Ligands , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Thiones
10.
Int J Mol Sci ; 23(11)2022 May 29.
Article in English | MEDLINE | ID: mdl-35682764

ABSTRACT

Malignant melanoma (MM) is the most lethal skin cancer. Despite a 4% reduction in mortality over the past few years, an increasing number of new diagnosed cases appear each year. Long-term therapy and the development of resistance to the drugs used drive the search for more and more new agents with anti-melanoma activity. This review focuses on the most recent synthesized anti-melanoma agents from 2020-2022. For selected agents, apart from the analysis of biological activity, the structure-activity relationship (SAR) is also discussed. To the best of our knowledge, the following literature review delivers the latest achievements in the field of new anti-melanoma agents.


Subject(s)
Antineoplastic Agents , Melanoma , Skin Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Melanoma/pathology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
11.
Molecules ; 27(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35566053

ABSTRACT

A novel biologically active thiosemicarbazide derivative ligand L (N-[(phenylcarbamothioyl)amino]pyridine-3-carboxamide) and a series of its five metal(II) complexes, namely: [Co(L)Cl2], [Ni(L)Cl2(H2O)], [Cu(L)Cl2(H2O)], [Zn(L)Cl2] and [Cd(L)Cl2(H2O)] have been synthesized and thoroughly investigated. The physicochemical characterization of the newly obtained compounds has been performed using appropriate analytical techniques, such as 1H and l3C nuclear magnetic resonance (NMR), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and magnetic measurements. In order to study the pharmacokinetic profile of the compounds, ADMET analysis was performed. The in vitro studies revealed that the synthesized compounds exhibit potent biological activity against A549 human cancer cell line.


Subject(s)
Coordination Complexes , Cadmium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Humans , Ligands , Semicarbazides/pharmacology , Spectrophotometry, Infrared , Zinc/chemistry
12.
Molecules ; 27(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35458681

ABSTRACT

The blockade of kainate receptors, in particular with non-competitive antagonists, has-due to their anticonvulsant and neuroprotective properties-therapeutic potential in many central nervous system (CNS) diseases. Deciphering the structural properties of kainate receptor ligands is crucial to designing medicinal compounds that better fit the receptor binding pockets. In light of that fact, here, we report experimental and computational structural studies of four indole derivatives that are non-competitive antagonists of GluK1/GluK2 receptors. We used X-ray studies and Hirshfeld surface analysis to determine the structure of the compounds in the solid state and quantum chemical calculations to compute HOMO and LUMO orbitals and the electrostatic potential. Moreover, non-covalent interaction maps were also calculated. It is worth emphasizing that compounds 3 and 4 are achiral molecules crystallising in non-centrosymmetric space groups, which is a relatively rare phenomenon.


Subject(s)
Indoles , Receptors, Kainic Acid , Indoles/pharmacology , Ligands , Protein Binding , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism
13.
Bioorg Chem ; 123: 105765, 2022 06.
Article in English | MEDLINE | ID: mdl-35427940

ABSTRACT

The methods of fighting cancer are far from ideal, therefore it is necessary to search for innovative and effective drugs. In our work, we present pyrazole derivatives and their modifications with polymer microspheres as potential anticancer agents. Molecular and crystal structures of pyrazole derivatives were determined an X-ray analysis and characterized by theoretical calculations. Modifications of cross-linked polymer microspheres with pyrazole derivatives were made on the basis of divinylbenzene and glycidyl methacrylate. The in vitro antiproliferative activity of the pyrazole derivatives and their modified microspheres was assessed against a normal cell line, namely monkey epithelial renal cells (GMK) and cancer cell lines, such as human hepatocellular carcinoma cell line (HepG2), human breast adenocarcinoma cell line (MCF-7) as well as human lung adenocarcinoma cell line (A549), using the MTT assay. All the tested pyrazole derivatives and the polymer microspheres modified by them showed antiproliferative activity in vitro. Two of the modified substances showed the greatest ability to inhibit divisions of all cancer cells. In order to determine a potential target, molecular docking was performed. In silico studies carried out with the use of the human EphB1 receptor revealed that the analyzed compounds bound to the EphB1 binding site, and the compounds with the highest antiproliferative activity showed a better fit to the active site.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Microspheres , Molecular Docking Simulation , Molecular Structure , Polymers/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship
14.
Biomolecules ; 12(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-35204651

ABSTRACT

In this paper, thiosemicarbazide derivatives were synthesized as potential anticancer agents. X-ray investigations for 1-(2,4-dichlorophenoxy)acetyl-4-(2-fluorophenyl) thiosemicarbazide, 1-(2,4-dichlorophenoxy)acetyl-4-(4-metylothiophenyl)thiosemicarbazide and 1-(2,4-di chlorophenoxy)acetyl-4-(4-iodophenyl)thiosemicarbazide were carried out in order to confirm the synthesis pathways, identify their tautomeric forms, analyze the conformational preferences of molecules, and identify intra- and intermolecular interactions in the crystalline state. TLC and RP-HPLC analyses were used to determine lipophilicity. The lipophilicity analysis revealed that the 4-substituted halogen derivatives of thiosemicarbazides showed greater lipophilicity compared with 2-substituted derivatives. The optimal range of lipophilicity for biologically active compounds logkw is between 4.14 and 4.78. However, as the analysis showed, it is not a decisive parameter. The cytotoxicity of the new compounds was evaluated against both the G-361 and BJ cell lines. Cytotoxicity analyses and cell-cycle and cell apoptosis assays were performed. The MTT test demonstrated that three compounds were cytotoxic to melanoma cells and not toxic to normal fibroblasts in the concentration range used. The cell cycle analysis showed that the compounds had no significant effect on the cell cycle inhibition. An extensive gene expression analysis additionally revealed that all compounds tested downregulated the expression of dihydroorotate dehydrogenase (DHODH). DHODH is a mitochondrial enzyme involved in the de novo synthesis of pyrimidines. Due to the rapid rate of cancer cell proliferation and the increased demand for nucleotide synthesis, it has become a potential therapeutic target.


Subject(s)
Antineoplastic Agents , Melanoma , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Semicarbazides , Structure-Activity Relationship
15.
Pharmacol Rep ; 74(2): 406-424, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064921

ABSTRACT

BACKGROUND: Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays one of the hot topics in drug discovery. In particular, allosteric modulators of D2 receptor have been proposed as potential modern therapeutics to treat schizophrenia and Parkinson's disease. METHODS: To address some subtle structural and stereochemical aspects of allosteric modulation of D2 receptor, we performed extensive in silico studies of both enantiomers of two compounds (compound 1 and compound 2), and one of them (compound 2) was synthesized as a racemate in-house and studied in vitro. RESULTS: Our molecular dynamics simulations confirmed literature reports that the R enantiomer of compound 1 is a positive allosteric modulator of the D2L receptor, while its S enantiomer is a negative allosteric modulator. Moreover, based on the principal component analysis (PCA), we hypothesized that both enantiomers of compound 2 behave as silent allosteric modulators, in line with our in vitro studies. PCA calculations suggest that the most pronounced modulator-induced receptor rearrangements occur at the transmembrane helix 7 (TM7). In particular, TM7 bending at the conserved P7.50 and G7.42 was observed. The latter resides next to the Y7.43, which is a significant part of the orthosteric binding site. Moreover, the W7.40 conformation seems to be affected by the presence of the positive allosteric modulator. CONCLUSIONS: Our work reveals that allosteric modulation of the D2L receptor can be affected by subtle ligand modifications. A change in configuration of a chiral carbon and/or minor structural modulator modifications are solely responsible for the functional outcome of the allosteric modulator.


Subject(s)
Dopamine , Molecular Dynamics Simulation , Allosteric Regulation , Binding Sites , Ligands , Receptors, G-Protein-Coupled
16.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206582

ABSTRACT

Two new pyrazole derivatives, namely compound 1 and compound 2, have been synthesized, and their biological activity has been evaluated. Monocrystals of the obtained compounds were thoroughly investigated using single-crystal X-ray diffraction analysis, FTIR spectroscopy, and NMR spectroscopy. The results gathered from all three techniques are in good agreement, provide complete information about the structures of 1 and 2, and confirm their high purity. Thermal properties were studied using thermogravimetric analysis; both 1 and 2 are stable at room temperature. In order to better characterize 1 and 2, some physicochemical and biological properties have been evaluated using ADMET analysis. The cytotoxic activity of both compounds was determined using the MTT assay on the A549 cell line in comparison with etoposide. It was determined that compound 2 was effective in the inhibition of human lung adenocarcinoma cell growth and may be a promising compound for the treatment of lung cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , A549 Cells , Cell Proliferation/drug effects , Cell Survival/drug effects , Chemical Phenomena , Crystallography, X-Ray , Humans , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Spectrum Analysis , Structure-Activity Relationship
17.
Molecules ; 26(5)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33799954

ABSTRACT

Bacterial strains become resistant to almost all classes of antibiotics, which makes it necessary to look for new substitutes. The non-absorbable ciprofloxacin-biguanide bismuth complex, used locally, may be a good alternative to a conventional therapy. The purpose of this study was to study the structure of the proposed ciprofloxacin (CIP) -bismuth(III)-chlorhexidine (CHX) composite (CIP-Bi-CHX). The spectroscopic techniques such as UV-VIS (ultraviolet-visible) spectroscopy, FTIR (Fourier-transform infrared) spectroscopy and NMR (Nuclear Magnetic Resonance) spectroscopy were used for structure characterization of the hybrid compound. The performed analysis confirmed the presence of the two active components-CIP and CHX and revealed the possible coordination sites of the ligands with bismuth ion in the metallo-organic structure. Spectroscopic study showed that the complexation between Bi(III) and CIP occurs through the carboxylate and ketone groups of the quinolone ring, while CHX combines with the central ion via the biguanide moieties.


Subject(s)
Anti-Bacterial Agents/chemistry , Bismuth/chemistry , Chlorhexidine/chemistry , Ciprofloxacin/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
18.
Int J Mol Sci ; 22(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803618

ABSTRACT

A series of thiosemicarbazone derivatives was prepared and their anti-tumor activity in vitro was tested. The X-ray investigation performed for compounds T2, T3 and T5 confirmed the synthesis pathway and assumed molecular structures of analyzed thiosemicarbazones. The conformational preferences of the thiosemicarbazone system were characterized using theoretical calculations by AM1 method. Selected compounds were converted into complexes of Cu (II) ions. The effect of complexing on anti-tumor activity has been investigated. The copper(II) complexes, with Schiff bases T1, T10, T12, T13, and T16 have been synthesized and characterized by chemical and elemental analysis, FTIR spectroscopy and TGA method. Thermal properties of coordination compounds were studied using TG-DTG techniques under dry air atmosphere. G361, A375, and SK-MEL-28 human melanoma cells and BJ human normal fibroblast cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The compounds with the most promising anti-tumour activity were then selected and their cytotoxicity was verified with cell cycle analysis and apoptosis/necrosis detection. Additionally, DNA damages in the form of a basic sites presence and the expression of oxidative stress and DNA damage response genes were evaluated. The obtained results indicate that complexation of thiosemicarbazone derivatives with Cu (II) ions improves their antitumor activity against melanoma cells. The observed cytotoxic effect is associated with DNA damage and G2/M phase of cell cycle arrest as well as disorders of the antioxidant enzymes expression.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Melanoma/pathology , Thiosemicarbazones/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Cell Survival/drug effects , Coordination Complexes/chemistry , Copper/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Ions , Melanoma/genetics , Molecular Conformation , Necrosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Temperature , Thiosemicarbazones/chemistry
19.
Molecules ; 25(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352814

ABSTRACT

A series of 1,2,4-triazole derivatives were synthesized and assigned as potential anti-tuberculosis substances. The molecular and crystal structures for the model compounds C1, C12, and C13 were determined using X-ray analysis. The X-ray investigation confirmed the synthesis pathway and the assumed molecular structures for analyzed 1,2,4-triazol-5-thione derivatives. The conformational preferences resulting from rotational degrees of freedom of the 1,2,4-triazole ring substituents were characterized. The lipophilicity (logP) and electronic parameters as the energy of frontier orbitals, dipole moments, NBO net charge distribution on the atoms, and electrostatic potential distribution for all structures were calculated at AM1 and DFT/B3LYP/6-311++G(d,p) level. The in vitro test was done against M. tuberculosis H37Ra, M. phlei, M. smegmatis, and M. timereck. The obtained results clearly confirmed the antituberculosis potential of compound C4, which turned out to be the most active against Mycobacterium H37Ra (MIC = 0.976 µg/mL), Mycobaterium pheli (MIC = 7.81 µg/mL) and Mycobacerium timereck (62.6 µg/mL). Satisfactory results were obtained with compounds C8, C11, C14 versus Myc. H37Ra, Myc. pheli, Myc. timereck (MIC = 31.25-62.5 µg/mL). The molecular docking studies were carried out for all investigated compounds using the Mycobacterium tuberculosis cytochrome P450 CYP121 enzyme as molecular a target connected with antimycobacterial activity.


Subject(s)
Antitubercular Agents/pharmacology , Triazoles/pharmacology , Microbial Sensitivity Tests/methods , Molecular Docking Simulation/methods , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship
20.
Materials (Basel) ; 13(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957575

ABSTRACT

One of the strategies for seeking new biologically active substances is to modify compounds with potential biological activity. In this paper, 1,2,4-triazolin-5-thione derivative (3) was obtained in the cyclization reaction of appropriate thiosemicarbazide (2) as an organic ligand. The copper(II) complex, [CuCl2(H2O)2L2] (L=4-cyclohexyl-3-(nitrophenyl)methyl-1,2,4-triazolin-5-thione) (Cu-3) was prepared in a reaction of free ligand (3) with a CuCl2·2H2O solution in MeOH/EtOH mixture at room temperature. TGA data show that Cu-3 and free ligand are stable at room temperature. Both compounds were screened in vitro for antibacterial and antifungal activities using the broth microdilution method. The obtained complex (Cu-3) showed higher antibacterial effect, especially towards Gram-positive bacteria (with moderate activity and Minimal Inhibitory Concentration MIC = 250-500 µg/mL) than the free ligand (3) (with mild or no bioactivity and MIC ≥ 1000 µg/mL). In turn, yeasts, belonging to Candida albicans, exhibited similar sensitivity to both the copper(II) complex (Cu-3) and the organic ligand (3). The anticandidal activity of these compounds was moderate (MIC = 500 µg/mL), or, in the case of other Candida spp., lower (MIC ≥ 1000 µg/mL).

SELECTION OF CITATIONS
SEARCH DETAIL
...