Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Aided Mol Des ; 28(1): 5-12, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24488306

ABSTRACT

Dual Orexin Receptor Antagonists (DORA) bind to both the Orexin 1 and 2 receptors. High resolution crystal structures of the Orexin 1 and 2 receptors, both class A GPCRs, were not available at the time of this study, and thus, ligand-based analyses were invoked and successfully applied to the design of DORAs. Computational analysis, ligand based superposition, unbound small-molecule X-ray crystal structures and NMR analysis were utilized to understand the conformational preferences of key DORAs and excellent agreement between these orthogonal approaches was seen in the majority of compounds examined. The predominantly face-to-face (F2F) interaction observed between the distal aromatic rings was the core 3D shape motif in our design principle and was used in the development of compounds. A notable exception, however, was seen between computation and experiment for suvorexant where the molecule exhibits an extended conformation in the unbound small-molecule X-ray structure. Even taking into account solvation effects explicitly in our calculations, we nevertheless find support that the F2F conformation is the bioactive conformation. Using a dominant states approximation for the partition function, we made a comprehensive assessment of the free energies required to adopt both an extended and a F2F conformation of a number of DORAs. Interestingly, we find that only a F2F conformation is consistent with the activities reported.


Subject(s)
Azepines/chemistry , Crystallography, X-Ray , Orexin Receptors/chemistry , Triazoles/chemistry , Humans , Ligands , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure , Orexin Receptor Antagonists
SELECTION OF CITATIONS
SEARCH DETAIL
...