Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(9): 102377, 2022 09.
Article in English | MEDLINE | ID: mdl-35970388

ABSTRACT

Biosynthesis of riboflavin (RF), the precursor of the redox cofactors FMN and FAD, was thought to be well understood in bacteria, with all the pathway enzymes presumed to be known and essential. Our previous research has challenged this view by showing that, in the bacterium Sinorhizobium meliloti, deletion of the ribBA gene encoding the enzyme that catalyzes the initial steps on the RF biosynthesis pathway only causes a reduction in flavin secretion rather than RF auxotrophy. This finding led us to hypothesize that RibBA participates in the biosynthesis of flavins destined for secretion, whereas S. meliloti has another enzyme that performs this function for internal cellular metabolism. Here, we identify and biochemically characterize a novel formamidase (SMc02977) involved in the production of RF for intracellular functions in S. meliloti. This catalyst, which we named Sm-BrbF, releases formate from the early RF precursor 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate to yield 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate. We show that homologs of this enzyme are present in many bacteria, are highly abundant in the Rhizobiales order, and that sequence homologs from Brucella abortus and Liberobacter solanacearum complement the RF auxotrophy of the Sm1021ΔSMc02977 mutant. Furthermore, we show that the B. abortus enzyme (Bab2_0247, Ba-BrbF) is also an 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate formamidase, and that the bab2_0247 mutant is a RF auxotroph exhibiting a lower level of intracellular infection than the wildtype strain. Finally, we show that Sm-BrbF and Ba-BrbF directly interact with other RF biosynthesis pathway enzymes. Together, our results provide novel insight into the intricacies of RF biosynthesis in bacteria.


Subject(s)
Amidohydrolases , Riboflavin , Sinorhizobium meliloti , Amidohydrolases/metabolism , Flavin Mononucleotide , Flavin-Adenine Dinucleotide , Formates , Phosphates , Riboflavin/biosynthesis , Sinorhizobium meliloti/enzymology
2.
Toxicology ; 302(2-3): 114-22, 2012 Dec 16.
Article in English | MEDLINE | ID: mdl-23026733

ABSTRACT

The use and production of multi-walled carbon nanotubes (MWCNTs) have significantly increased over the last decade due to their versatility in numerous applications. Their unique physical and chemical properties make them desirable for various biomedical applications, but the same properties also raise concerns about their safety to human health, particularly at the cellular level. The vascular endothelium could be exposed to nanomaterials either by direct intravenous administration in nanomedicine or by translocation following inhalational exposure in an occupational setting. We hypothesized that direct exposure to MWCNTs will increase the expression of inflammatory markers in human aortic endothelial cells (HAEC). We also investigated the effect of the route of exposure on activation by changing the suspension medium of the MWCNTs. HAEC were treated in vitro with MWCNTs (1 or 10 µg/cm(2)) suspended in either cell culture medium [(M)-MWCNTs] or 10% clinical grade pulmonary surfactant [(S)-MWCNTs]. The zeta potential of the (S)-MWCNTs was significantly more negative than the (M)-MWCNTs suggesting a more stable suspension. Treatment of HAEC with (S)-MWCNTs; as compared to (M)-MWCNTs resulted in a significantly higher up-regulation of mRNA transcripts for cell adhesion molecules VCAM1, SELE, ICAM1 and the chemokine CCL2. Time dependent changes in VCAM1 and CCL2 protein levels were confirmed by immunofluorescence, flow cytometry and ELISA. A label free quantitative mass spectrometry proteomic analysis was utilized to compare protein expression patterns between the two suspensions of MWCNTs. We identified significant expression changes in >200 unique proteins in MWCNT treated HAEC. However, the two suspensions of MWCNTs resulted in different protein expression patterns with the eIF2 pathway as the only common pathway identified between the two suspensions. These data suggest that direct exposure to MWCNTs induces acute inflammatory and protein expression changes in HAEC, which is influenced by the type of media used for suspension of MWCNTs and their resulting zeta potential.


Subject(s)
Culture Media/chemistry , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Nanotubes, Carbon/chemistry , Aorta/cytology , Aorta/drug effects , Aorta/pathology , Cell Adhesion/drug effects , Cell Line , Cell Survival/drug effects , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Inhalation Exposure , Nanotubes, Carbon/toxicity , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
3.
Pulm Pharmacol Ther ; 23(2): 107-14, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19879371

ABSTRACT

BACKGROUND: Disruption of fibrinolytic homeostasis participates in the pathogenesis of severe lung diseases like acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF) and plastic bronchitis. We have developed a pulmonary formulation of tissue plasminogen activator (pf-tPA) that withstands nebulization and reaches the lower airways. OBJECTIVE: Since treatment of ARDS, IPF and plastic bronchitis will require repeated administration of pf-tPA, the purpose of this study was to determine the safety of prolonged, repeated administration of pf-mouse tPA (pf-mtPA) to the lungs of healthy mice. METHODS: Male and female B6C3F1 mice received one of two intratracheal (IT) doses of either nebulized pf-mtPA or sterile saline twice daily for 28 days. Weekly blood samples were collected to estimate hematocrit. Following the dosing period, animals were sacrificed for gross necropsy, the acquisition of bronchoalveolar lavage fluid (BALF), and histological assessment of the lungs and other major organs. RESULTS: The low dose of pf-mtPA was well tolerated by both female and male mice. However, female and male mice that received the high dose experienced a 16% and 8% incidence, respectively, of fatal pulmonary hemorrhage. Although male mice had a lower incidence of bleeding, these events occurred at lower mean (+/-S.E.) doses (1.06+/-0.02mg/kg/d) of pf-mtPA compared with females (1.48+/-0.03mg/kg/d, p<0.001). In addition, male mice had higher BALF mtPA concentrations. Bleeding occurred six and 12 days in male and female mice, respectively, after the initiation of dosing suggesting that mtPA accumulated in the lungs. CONCLUSION: This study established a safe dose range and demonstrated the feasibility of prolonged, repeated dosing of pf-tPA. High doses (> or =1mg/kg/d) were associated with pulmonary hemorrhage that may be due, in part, to accumulation of drug in the lungs.


Subject(s)
Fibrinolytic Agents/toxicity , Hemorrhage/chemically induced , Lung/drug effects , Tissue Plasminogen Activator/toxicity , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid/chemistry , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Delivery Systems , Female , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/pharmacokinetics , Lung/metabolism , Lung Diseases/drug therapy , Male , Mice , Sex Factors , Tissue Distribution , Tissue Plasminogen Activator/administration & dosage , Tissue Plasminogen Activator/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...