Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 43: 140-147, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195557

ABSTRACT

The purpose of this work was to estimate the eye lens radiation exposure of the medical staff during interventional urology procedures. The measurements were carried out for six medical staff members performing 33 fluoroscopically-guided procedures. All procedures were performed with the X-ray tube positioned over the couch. The dose equivalents (Hp(0.07)) were measured at the eye level using optically stimulated luminescent (OSL) dosimeters and at the chest level with OSL dosimeters placed over the protective apron. The ratio of the dose measured close to the eye lens and on the chest was determined. The annual eye lens dose was estimated based on the workload in the service. For the physician and the instrumentalist nurse, the eye to chest dose ratios were 0.9±0.4 and 2.6±1.6 (k = 2), respectively. The average doses per procedure received by the eye lens were 78±24 µSv and 38±18 µSv, respectively. The eye lens dose per DAP was 8.4±17.5 µSv/(Gy·cm2) for the physician and 4.1±8.7 µSv/(Gy·cm2) for the instrumentalist nurse. The results indicate that the eye lens to chest dose ratio greatly varies according to the staff function and that the dose equivalent measured by the personal dosimeter worn on the chest may underestimate the eye lens dose of some medical staff members.


Subject(s)
Health Personnel , Lens, Crystalline/radiation effects , Occupational Exposure/analysis , Radiation Exposure/analysis , Urology , Humans , X-Rays
2.
Phys Med Biol ; 60(7): 2921-37, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25789711

ABSTRACT

Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson's Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated µeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.


Subject(s)
Parkinson Disease/pathology , Parkinson Disease/radiotherapy , Phototherapy/methods , Spectroscopy, Near-Infrared/methods , Brain/pathology , Computer Simulation , Female , Head , Humans , Light , Middle Aged , Monte Carlo Method , Optics and Photonics , Radiometry , Skull
3.
Phys Rev Lett ; 105(15): 155003, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-21230915

ABSTRACT

An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a "snowflake" (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔWELM/Wp) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally.

SELECTION OF CITATIONS
SEARCH DETAIL
...