Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20579, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996569

ABSTRACT

Fish exhibit complex social behaviours that can influence their stress levels and well-being. However, little is known about the link between social interactions and stress in wild fish, especially in running water environments. While many studies have explored the stress axis in fish, most have focused on specific social contexts, leaving gaps in understanding stress responses to social changes. Our study investigated collective behaviour and stress in wild Italian riffle dace (Telestes muticellus) in a controlled experimental setup simulating a natural river system. Results reveal that group-living fish have lower cortisol and oxidative stress levels in muscle tissue compared to solitary counterparts, suggesting a calming effect of conspecific presence. Additionally, we observed upregulated expression of antioxidant enzymes in group-living fish, indicating potential benefits to antioxidant defence systems. These insights shed light on the dynamic relationship between group behaviour and stress in wild fish within running water habitats and emphasise the use of multidisciplinary approaches.


Subject(s)
Cyprinidae , Hydrocortisone , Animals , Antioxidants , Oxidative Stress , Water
2.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36829911

ABSTRACT

Antarctica is the continent with the lowest local human impact; however, it is susceptible to pollution from external sources. Emerging pollutants such as perfluoroalkyl substances pose an increasing threat to this environment and therefore require more in-depth investigations to understand their environmental fate and biological impacts. The present study focuses on expression analysis at the transcriptional level of genes coding for four antioxidant enzymes (sod1, sod2, gpx1, and gpx4) in the liver and kidney of an Antarctic fish species, Trematomus newnesi (Boulenger, 1902). mRNA levels were also assessed in fish exposed to 1.5 µg/L of perfluoro-octanoic acid for 10 days. The kidney showed a higher level of expression than the liver in wildlife specimens. In the liver, the treatment induced an increase in gene expression for all the considered enzymes, whereas in the kidney, it induced a general decrease. The obtained results advance the scientific community's understanding of how the potential future presence of anthropogenic contaminants in the Southern Ocean can affect the antioxidant system of Antarctic fishes. The presence of pollutants belonging to the perfluoroalkyl substances in the Southern Ocean needs to be continuously monitored in parallel with this type of research.

3.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361591

ABSTRACT

Metal bioaccumulation and metallothionein (MT) expression were investigated in the gills and liver of the red-blooded Antarctic teleost Trematomus hansoni to evaluate the possibility for this species to face, with adequate physiological responses, an increase of copper and cadmium concentrations in its tissues. Specimens of this Antarctic fish were collected from Terra Nova Bay (Ross Sea) and used for a metal exposure experiment in controlled laboratory conditions. The two treatments led to a significant accumulation of both metals and increased gene transcription only for the MT-1. The biosynthesis of MTs was verified especially in specimens exposed to Cd, but most of these proteins were soon oxidized, probably because they were involved in cell protection against oxidative stress risk by scavenging reactive oxygen species. The obtained data highlighted the phenotypic plasticity of T. hansoni, a species that evolved in an environment characterized by naturally high concentrations of Cu and Cd, and maybe the possibility for the Antarctic fish to face the challenges of a world that is becoming more toxic every day.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Metallothionein/genetics , Metallothionein/metabolism , Cadmium/toxicity , Cadmium/analysis , Perciformes/genetics , Perciformes/metabolism , Gills/metabolism , Copper/toxicity , Copper/analysis , Metals/toxicity , Heavy Metal Poisoning , Fishes/metabolism , Water Pollutants, Chemical/toxicity
4.
Int J Mol Sci ; 23(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36233302

ABSTRACT

This work aimed to evaluate the effects of zinc (Zn) relating to cadmium (Cd)-induced toxicity and the role played by MTF-1. This transcription factor regulates the expression of genes encoding metallothioneins (MTs), some Zn transporters and the heavy chain of γ-glutamylcysteine synthetase. For this reason, two cell lines of mouse fibroblasts were used: a wild-type strain and a knockout strain to study the effects. Cells were exposed to complete medium containing: (1) 50 µM ZnSO4 (Zn), (2) 1 µM CdCl2 (Cd 1), (3) 2 µM CdCl2 (Cd 2), (4) 50 µM ZnSO4 + 1 µM CdCl2 (ZnCd 1) and (5) 50 µM ZnSO4 + 2 µM CdCl2 (ZnCd 2) for 4, 18 and 24 h. Following exposure, cell viability, the intracellular content of metals, glutathione (GSH) and MT and the gene expression of the two isoforms of MT was evaluated. The results obtained suggest that a lower Cd content in the co-treatments is responsible for the protection offered by Zn due to the probable competition for a common transporter. Furthermore, Zn determines an increase in GSH in co-treatments compared to treatments with Cd alone. Finally, the MTF-1 factor is essential for the expression of MT-1 but not of MT-2 nor probably for the heavy chain of γ-glutamylcysteine synthetase.


Subject(s)
Cadmium Poisoning , Cadmium , Animals , Cadmium/metabolism , Fibroblasts/metabolism , Glutamate-Cysteine Ligase/genetics , Glutathione/pharmacology , Metallothionein/metabolism , Mice , Transcription Factors/metabolism , Zinc/pharmacology
5.
Antioxidants (Basel) ; 11(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35740012

ABSTRACT

In recent decades, the interest in PFAS has grown exponentially around the world, due to the toxic effects induced by these chemical compounds in humans, as well as in other animals and plants. However, current knowledge related to the antistress responses that organisms can express when exposed to these substances is still insufficient and, therefore, requires further investigation. The present study focuses on antioxidant responses in Squalius cephalus and Padogobius bonelli, exposed to significant levels of PFAS in an area of the Veneto Region subjected to a recent relevant pollution case. These two ubiquitous freshwater species were sampled in three rivers characterised by different concentrations of PFAS. Several biomarkers of oxidative stress were evaluated, and the results suggest that PFAS chronic exposure induces some physiological responses in the target species, at both cellular and tissue scales. The risk of oxidative stress seems to be kept under control by the antioxidant system by means of gene activation at the mitochondrial level. Moreover, the histological analysis suggests an interesting protective mechanism against damage to the protein component based on lipid vacuolisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...