Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome Res Rep ; 2(3): 18, 2023.
Article in English | MEDLINE | ID: mdl-38046818

ABSTRACT

Aim: The "gut-joint" axis is suspected to be involved in the pathophysiology of osteoarthritis (OA). The present study aims at investigating the potential of lipoproteins (Lpps) secreted by Bifidobacterium longum to alleviate OA progression in the rat. Methods: Experimental OA was induced in rats harbouring Schaedler Flora maintained in SPF conditions. Two weeks post-injection, 20 rats were randomized to water (n = 10) or 0.3 mg/L Lpps solution (n = 10). Weight and food intake were monitored for 6 weeks. At sacrifice, joints were scored using macroscopic and histological criteria. Serum LPS, Schaedler flora as well as selected intestinal bacteria were analyzed. Results: Lpps intake prevents OA progression. The protected rats showed a significant increase in lactobacilli along the intestine as well as in Mucispirillum schaedleri in the colon and a significant decrease in Parabacteroides goldsteini and Akkermansia in caecum and colon, respectively. There was no significant difference in serum lipopolysaccharide or bacteria translocating in Peyer's patches. Labelled Lpps were not detected in bone marrow of the OA joint. The principal component analysis points out that OA prevention is primarily associated with bacteria involved in the tryptophane degradation pathway and SCFA formation. Conclusion: In rats deprived of bifidobacteria, intake of B.longum Lpps prevented OA development and modulated the intestinal microbiome with a possible impact on the bacterial end-products. The link between Lpps and the gut microbial metabolome warrants further investigation.

2.
Nutrients ; 15(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38068720

ABSTRACT

Gut microbiota affect progression of rheumatoid arthritis (RA). The present study aims at investigating the protective potential of Bifidobacterium longum cell wall lipoproteins (Lpps) shown to modulate the intestinal microbiome and prevent osteoarthritis. Arthritis was induced by collagen (CIA) or anti-collagen antibodies (CAIA) injection. Intake of 0.5 mg of Lpps/L, but not 0.25 and 1 mg of Lpps/L, significantly alleviated RA symptoms in CIA DBA/1OOaHsd mice. The arthritis index (AI) was also reduced in CAIA mice. In the CIA-protected group, colon Ligilactobacillus murinus, caecal Lactobacillus johnsonii and spleen weight correlated with AI, whereas the reverse was observed with splenic CD11c+ dendritic cells (cDCs). The unprotected CIA Lpps group harbored higher cecal and colon E. coli and lower caecal L. murinus. Lpps administration to CAIA mice after arthritis induction led to lower colon E. plexicaudatum counts. Splenocytes from CIA-protected mice triggered by LPS secreted higher Il-10 than control ones. However, a higher IL-10 response was not elicited in gnotobiotic RA mice splenocytes with lower cDCs' recruitment. Labeled bacteria with the Lpps signal were detected in CIA mice bone marrow (BM) cDCs 5 and 16 h post-gavage but not in Peyer's patches and the spleen. In vitro uptake of Lpps by primary BM and thymus cells was observed within 24 h. An FACS analysis detected the Lpps signal in the plasmacytoid cell compartment but not in cDCs. In conclusion, Lpps dosing is critical for preventing arthritis progression and appropriately modulating the microbiome. Our results also highlight the possible triggering of the immune system by Lpps.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Interleukin-10 , Arthritis, Experimental/chemically induced , Bifidobacterium , Escherichia coli , Mice, Inbred DBA , Collagen , Cell Wall
3.
Clin Chem Lab Med ; 40(6): 579-86, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12211652

ABSTRACT

Bikunin (BK) is a Kunitz-type proteinase inhibitor responsible for most of the antitryptic activity of urine and so is known as the urinary trypsin inhibitor. As its excretion increases in inflammatory conditions, it is often considered to be a positive acute phase protein (APP). However, the gene for BK is downregulated in inflammation. In human plasma the major part of BK is covalently linked through a glycosaminoglycan chain to one or two homologous peptide heavy chains, thus forming high molecular weight proteinase inhibitors called pre-alpha-inhibitor (PalphaI) and inter-alpha-inhibitor (IalphaI), respectively. The C-terminal parts of these heavy chains are very sensitive to proteolysis. Neutrophil proteinases in particular are able to release from IalphaI and PalphaI BK (M, about 25,000) which retains its antitryptic activity and is quickly excreted in urine. It was therefore an early supposition that the higher urinary excretion of BK occurring during inflammatory diseases should be, at least in some respect, related to a partial proteolysis of IalphaI and PalphaI. In this study we observed that BK, determined as antitryptic activity, was clearly increased in urine from 35 patients with inflammatory diseases varying in origin and severity (76.5 +/- 75.5 IU/g vs. reference value <10 IU/g creatinine). This increase seems mainly to be associated with polymorphonuclear leukocyte activation, monitored by human leukocyte elastase (HLE) determination rather than with the acute phase response assessed by C-reactive protein (CRP) measurement. For all the patients we found that the urinary levels of BK and serum concentration of intact IalphaI correlated inversely (r=-0.36; p=0.03), in agreement with the presumed precursor-product relationship linking IalphaI and BK. We also proved that urinary BK was significantly higher, and serum IalphaI was significantly lower, in samples with plasma HLE values above the reference: 90 microg/l. Taken together, our results demonstrate that BK, the urinary excretion of which is increased in inflammatory conditions, originates, at least partly, from IalphaI and PalphaI by proteolytic cleavage. Consequently, urinary BK determination provides information on the severity of systemic proteolysis occurring in inflammation. We also demonstrated that during inflammatory diseases IalphaI and PalphaI concentrations in serum are dependent on their increased utilization as well as on the regulation of their biosynthesis.


Subject(s)
Biomarkers/urine , Endopeptidases/metabolism , Inflammation/urine , Membrane Glycoproteins/urine , Protease Inhibitors/metabolism , Trypsin Inhibitor, Kunitz Soybean , Biomarkers/blood , C-Reactive Protein/metabolism , Humans , Inflammation/blood , Leukocyte Elastase/urine , Predictive Value of Tests , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...