Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7959, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042850

ABSTRACT

Correlating the microstructure of an energy conversion device to its performance is often a complex exercise, notably in solid oxide fuel cell research. Solid oxide fuel cells combine multiple materials and interfaces that evolve in time due to high operating temperatures and reactive atmospheres. We demonstrate here that operando environmental transmission electron microscopy can identify structure-property links in such devices. By contacting a cathode-electrolyte-anode cell to a heating and biasing microelectromechanical system in a single-chamber configuration, a direct correlation is found between the environmental conditions (oxygen and hydrogen partial pressures, temperature), the cell open circuit voltage, and the microstructural evolution of the fuel cell, down to the atomic scale. The results shed important insights into the impact of the anode oxidation state and its morphology on the cell electrical properties.

2.
Ultramicroscopy ; 181: 144-149, 2017 10.
Article in English | MEDLINE | ID: mdl-28558287

ABSTRACT

Recent advances in microelectromechanical systems (MEMS) based chips for in situ transmission electron microscopy are opening exciting new avenues in nanoscale research. The capability to perform current-voltage measurements while simultaneously analyzing the corresponding structural, chemical or even electronic structure changes during device operation would be a major breakthrough in the field of nanoelectronics. In this work we demonstrate for the first time how to electrically contact and operate a lamella cut from a resistive random access memory (RRAM) device based on a Pt/HfO2/TiN metal-insulator-metal (MIM) structure. The device was fabricated using a focused ion beam (FIB) instrument and an in situ lift-out system. The electrical switching characteristics of the electron-transparent lamella were comparable to a conventional reference device. The lamella structure was initially found to be in a low resistance state and could be reset progressively to higher resistance states by increasing the positive bias applied to the Pt anode. This could be followed up with unipolar set/reset operations where the current compliance during set was limited to 400 µA. FIB structures allowing to operate and at the same time characterize electronic devices will be an important tool to improve RRAM device performance based on a microstructural understanding of the switching mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...