Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 553: 46-53, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29802842

ABSTRACT

Disperse Orange 37 (DO37) is an efficient azo dye for dyeing synthetic textile materials owing to its resistance to degradation that may also be harmful to humans as DO37 is not entirely eliminated in wastewater treatment. In this paper, we demonstrate that DO37 is bleached by reduced glutathione (GSH) in a reaction catalyzed by glutathione-s-transferase (GST), a phase II detoxification enzyme. The reaction included a nucleophilic attack involving sulfhydryl groups, confirmed using density functional theory (DFT) calculations. DO37 also induced quenching in the fluorescence of GST through static suppression. The reaction was determined using differential pulse voltammetry (DPV) by monitoring the oxidation peak at 0.65 V of GSH sulfhydryl group. Quantitative estimation of the product reaction could be made by measuring an additional oxidation peak at 0.91 V which increased linearly with DO37 concentration. These electrochemical determinations were made possible by preconcentrating the reaction product on a graphite-epoxy electrode with immobilization of GST onto magnetite nanoparticles. Straightforward biological implications from the results are associated with the known toxicity of azo dyes such as DO37, which has been proven here to interact strongly with both GSH and the liver enzyme GST, and may induce hepatocarcinogenesis or other types of cancer.


Subject(s)
Azo Compounds/chemistry , Electrochemical Techniques/methods , Glutathione Transferase/metabolism , Liver/metabolism , Proteins/metabolism , Catalysis , Density Functional Theory , Humans , Liver/enzymology , Magnetite Nanoparticles/chemistry , Oxidation-Reduction
2.
Mater Sci Eng C Mater Biol Appl ; 74: 365-373, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28254306

ABSTRACT

Molecularly imprinted polymers (MIPs) in combination with magnetic nanoparticles, in a core@shell format, were studied for selective detection of 1-chloro-2,4-dinitrobenzene (CDNB), a powerful allergenic substance. Magnetic nanoparticles were prepared by the co-precipitation method and mixed with oleic acid (OA). This material was then encapsulated in three types of hydrophobic polymeric matrix, poly-(MA-co-EDGMA), poly-(AA-co-EDGMA), and poly-(1-VN-co-EDGMA), by the mini-emulsion method. These matrices were used due to their ability to interact specifically with the functional groups of the analyte. Finally, the MIP-CDNB was obtained on the magnetic-hydrophobic surfaces using precipitation polymerization in the presence of the analyte. XRD diffraction patterns suggested the presence of magnetite in the composite and SEM analysis revealed a nanoparticle size between 10 and 18nm. Under the optimized adsorption conditions, the magnetic-MIP material showed a higher adsorption capacity (5.1mgg-1) than its non-magnetic counterpart (4.2mgg-1). In tests of the selectivity of the magnetic-MIP towards CDNB, α-values of 2.5 and 10.4, respectively, were obtained for dichlorophenol and o-nitrophenol, two structurally similar compounds, and no adsorption was observed for any other non-analogous analyte. The magnetic-MIP and magnetic-NIP were applied using water enriched with 0.5mgL-1 of CDNB, achieving recovery values of 83.8(±0.8)% and 66(±1)%, respectively, revealing the suitability of the material for detection of CDNB.


Subject(s)
Allergens/analysis , Chromatography, High Pressure Liquid , Dinitrochlorobenzene/analysis , Magnetite Nanoparticles/chemistry , Molecular Imprinting , Polymers/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oleic Acid/chemistry , Particle Size , Polymers/chemical synthesis , Porosity , Reproducibility of Results , X-Ray Diffraction
3.
Talanta ; 97: 484-90, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22841112

ABSTRACT

An electrochemical magneto biosensor for the rapid determination of biotin in food samples is reported. The affinity reaction was performed on streptavidin-modified magnetic microbeads as a solid support in a direct competitive format. The biotinylated horseradish peroxidase enzyme (biotin-HRP) competes with free biotin in the sample for the binding sites of streptavidin on the magnetic microbeads. The modified magnetic beads were then easily captured by a magneto graphite-epoxy composite electrode and the electrochemical signal was based on the enzymatic activity of the HRP enzyme under the addition of H(2)O(2) as the substrate and o-phenilendiamine as cosubstrate. The response was electrochemically detected by square wave voltammetry. The limit of detection was 8.4×10(-8) mol L(--1) of biotin (20 µg L(--1)) with a dynamic range from 0.94 to 2.4×10(-7) mol L(--1). Biotin-fortified commercial dietary supplement and infant formula samples were evaluated obtaining good performances in the results. Total time of analysis was 40 min per 20 assays.


Subject(s)
Biosensing Techniques/methods , Biotin/analysis , Dietary Supplements/analysis , Magnets/chemistry , Analytic Sample Preparation Methods , Biotin/isolation & purification , Calibration , Electrochemistry , Food Analysis , Infant Formula/chemistry , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL
...