Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(5): 114158, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38722742

ABSTRACT

Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.


Subject(s)
Astrocytes , Gap Junctions , Hippocampus , KCNQ Potassium Channels , Potassium , Animals , Mice , Action Potentials/physiology , Astrocytes/metabolism , Connexins/metabolism , Connexins/genetics , Gap Junctions/metabolism , Hippocampus/metabolism , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Neurons/metabolism , Potassium/metabolism , Male , Female
2.
Nat Commun ; 15(1): 3583, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678030

ABSTRACT

Fragile X syndrome (FXS) is an inherited form of intellectual disability caused by the loss of the mRNA-binding fragile X mental retardation protein (FMRP). FXS is characterized by neuronal hyperexcitability and behavioral defects, however the mechanisms underlying these critical dysfunctions remain unclear. Here, using male Fmr1 knockout mouse model of FXS, we identify abnormal extracellular potassium homeostasis, along with impaired potassium channel Kir4.1 expression and function in astrocytes. Further, we reveal that Kir4.1 mRNA is a binding target of FMRP. Finally, we show that the deficit in astroglial Kir4.1 underlies neuronal hyperexcitability and several behavioral defects in Fmr1 knockout mice. Viral delivery of Kir4.1 channels specifically to hippocampal astrocytes from Fmr1 knockout mice indeed rescues normal astrocyte potassium uptake, neuronal excitability, and cognitive and social performance. Our findings uncover an important role for astrocyte dysfunction in the pathophysiology of FXS, and identify Kir4.1 channel as a potential therapeutic target for FXS.


Subject(s)
Astrocytes , Fragile X Mental Retardation Protein , Fragile X Syndrome , Neurons , Potassium Channels, Inwardly Rectifying , Animals , Male , Mice , Astrocytes/metabolism , Behavior, Animal , Disease Models, Animal , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neurons/physiology , Potassium/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Potassium Channels, Inwardly Rectifying/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
3.
Nat Commun ; 13(1): 2844, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35606347

ABSTRACT

The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-ß1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.


Subject(s)
Glycogen Synthase Kinase 3 , Neuroepithelial Cells , Cell Differentiation/physiology , Cerebral Cortex , Humans , Stem Cells , Telencephalon
4.
Neuroscientist ; 28(2): 144-162, 2022 04.
Article in English | MEDLINE | ID: mdl-33567971

ABSTRACT

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes which myelinate axons in the central nervous system. Although classically thought to be a homogeneous population, OPCs are reported to have different developmental origins and display regional and temporal diversity in their transcriptome, response to growth factors, and physiological properties. Similarly, evidence is accumulating that myelinating oligodendrocytes display transcriptional heterogeneity. Analyzing this reported heterogeneity suggests that OPCs, and perhaps also myelinating oligodendrocytes, may exist in different functional cell states. Here, we review the evidence indicating that OPCs and oligodendrocytes are diverse, and we discuss the implications of functional OPC states for myelination in the adult brain and for myelin repair.


Subject(s)
Myelin Sheath , Oligodendroglia , Axons/physiology , Cell Differentiation/physiology , Cell Lineage , Central Nervous System , Humans , Myelin Sheath/physiology , Oligodendroglia/metabolism
5.
Nat Neurosci ; 24(11): 1508-1521, 2021 11.
Article in English | MEDLINE | ID: mdl-34711959

ABSTRACT

Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.


Subject(s)
Brain/physiology , Myelin Sheath/physiology , Neuronal Plasticity/physiology , Neurons/physiology , White Matter/physiology , Animals , Brain/cytology , Humans , Oligodendroglia/physiology , White Matter/cytology
6.
Cell Rep ; 36(2): 109362, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260928

ABSTRACT

The mediobasal hypothalamus (MBH; arcuate nucleus of the hypothalamus [ARH] and median eminence [ME]) is a key nutrient sensing site for the production of the complex homeostatic feedback responses required for the maintenance of energy balance. Here, we show that refeeding after an overnight fast rapidly triggers proliferation and differentiation of oligodendrocyte progenitors, leading to the production of new oligodendrocytes in the ME specifically. During this nutritional paradigm, ME perineuronal nets (PNNs), emerging regulators of ARH metabolic functions, are rapidly remodeled, and this process requires myelin regulatory factor (Myrf) in oligodendrocyte progenitors. In genetically obese ob/ob mice, nutritional regulations of ME oligodendrocyte differentiation and PNN remodeling are blunted, and enzymatic digestion of local PNN increases food intake and weight gain. We conclude that MBH PNNs are required for the maintenance of energy balance in lean mice and are remodeled in the adult ME by the nutritional control of oligodendrocyte differentiation.


Subject(s)
Cell Differentiation , Median Eminence/cytology , Nerve Net/physiology , Nutritional Physiological Phenomena , Oligodendroglia/cytology , Adult , Animals , Cell Lineage , Cell Proliferation , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Inbred C57BL , Oligodendroglia/ultrastructure , Single-Cell Analysis , Transcriptome/genetics
7.
Neurosci Lett ; 703: 139-144, 2019 06 11.
Article in English | MEDLINE | ID: mdl-30904575

ABSTRACT

Brain tissue undergoes substantial activity-dependent reorganisation after stroke due to neuronal plasticity, leading to partial functional recovery in patients. Concurrent myelin repair is crucial for proper neuronal network function and reorganisation. Myelin repair after stroke might occur as myelin plasticity or as remyelination through the recruitment and differentiation of oligodendrocyte precursor cells (OPCs), which become myelin-forming oligodendrocytes (OLs). These two processes might share a similar guiding mechanism, which is postulated to depend on neuronal activity and glutamate signaling to OPCs. However, with ageing, the ability of OPCs to differentiate into myelinating OLs decreases due to changes in their ion channel and neurotransmitter receptor expression profile, rendering them less sensitive to neuronal activity. Because of their unique ability to replace damaged OLs, OPCs represent a potential therapeutic target for myelin repair in the context of stroke.


Subject(s)
Myelin Sheath/physiology , Neurons/physiology , Stroke/pathology , Animals , Cell Differentiation , Cell Proliferation , Humans , Neural Stem Cells/pathology , Neuronal Plasticity , Oligodendroglia/pathology , Stroke/physiopathology
8.
Eur J Neurosci ; 50(1): 1685-1699, 2019 07.
Article in English | MEDLINE | ID: mdl-30633415

ABSTRACT

The proper function of the nervous system is dependent on the balance of ions and water between the intracellular and extracellular space (ECS). It has been suggested that the interaction of aquaporin-4 (AQP4) and the transient receptor potential vaniloid isoform 4 (TRPV4) channels play a role in water balance and cell volume regulation, and indirectly, of the ECS volume. Using the real-time iontophoretic method, we studied the changes of the ECS diffusion parameters: ECS volume fraction α (α = ECS volume fraction/total tissue volume) and tortuosity λ (λ2  = free/apparent diffusion coefficient) in mice with a genetic deficiency of AQP4 or TRPV4 channels, and in control animals. The used models of cytotoxic edema included: mild and severe hypotonic stress or oxygen-glucose deprivation (OGD) in situ and terminal ischemia/anoxia in vivo. This study shows that an AQP4 or TRPV4 deficit slows down the ECS volume shrinkage during severe ischemia in vivo. We further demonstrate that a TRPV4 deficit slows down the velocity and attenuates an extent of the ECS volume decrease during OGD treatment in situ. However, in any of the cytotoxic edema models in situ (OGD, mild or severe hypotonic stress), we did not detect any alterations in the cell swelling or volume regulation caused by AQP4 deficiency. Overall, our results indicate that the AQP4 and TRPV4 channels may play a crucial role in severe pathological states associated with their overexpression and enhanced cell swelling. However, detailed interplay between AQP4 and TRPV4 channels requires further studies and additional research.


Subject(s)
Aquaporin 4/metabolism , Brain Edema/metabolism , Extracellular Space/metabolism , Somatosensory Cortex/metabolism , TRPV Cation Channels/metabolism , Animals , Aquaporin 4/deficiency , Disease Models, Animal , Electrocardiography , Female , Heart Arrest/metabolism , Hypoglycemia/metabolism , Hypoxia-Ischemia, Brain/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Potassium/metabolism , TRPV Cation Channels/deficiency
9.
Neuroscience ; 394: 127-143, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30367945

ABSTRACT

Transient receptor potential vanilloid type 4 (TRPV4) channels are involved in astrocyte volume regulation; however, only limited data exist about its mechanism in astrocytes in situ. We performed middle cerebral artery occlusion in adult mice, where we found twice larger edema 1 day after the insult in trpv4-/- mice compared to the controls, which was quantified using magnetic resonance imaging. This result suggests disrupted volume regulation in the brain cells in trpv4-/- mice leading to increased edema formation. The aim of our study was to elucidate whether TRPV4 channel-based volume regulation occurs in astrocytes in situ and whether the disrupted volume regulation in trpv4-/- mice might lead to higher edema formation after brain ischemia. For our experiments, we used trpv4-/- mice crossed with transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the glial fibrillary acidic protein promoter, which leads to astrocyte visualization by EGFP expression. For quantification of astrocyte volume changes, we used two-dimensional (2D) and three-dimensional (3D) morphometrical approaches and a quantification algorithm based on fluorescence intensity changes during volume alterations induced by hypotonicity or by oxygen-glucose deprivation. In contrast to in vitro experiments, we found little evidence of the contribution of TRPV4 channels to volume regulation in astrocytes in situ in adult mice. Moreover, we only found a rare expression of TRPV4 channels in adult mouse astrocytes. Our data suggest that TRPV4 channels are not involved in astrocyte volume regulation in situ; however, they play a protective role during the ischemia-induced brain edema formation.


Subject(s)
Astrocytes/metabolism , Astrocytes/pathology , Brain Edema/metabolism , Brain Edema/pathology , TRPV Cation Channels/metabolism , Animals , Brain Edema/etiology , Brain Ischemia/complications , Female , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , TRPV Cation Channels/genetics
10.
J Neurosci Methods ; 306: 38-44, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29885815

ABSTRACT

BACKGROUND: Several techniques for cell volume measurement using fluorescence microscopy have been established to date. In this study, we compare the performance of three different approaches which allow for estimations of the cell volume changes in biological samples containing individual fluorescently labeled cells either in culture or in the tissue context. The specific requirements, limitations and advantages of individual approaches are discussed. NEW METHOD: Global morphometric data are quantitatively compared with local information about the overall cell volume, represented by the concentration of a mobile fluorophore accumulated within the monitored cell. RESULTS: Volume changes induced by variations in the extracellular osmolarity in murine fibroblasts and astrocytes either in the culture or in the acute brain slices were registered by the three- and two-dimensional morphometries and by local fluorescence intensity measurements. The performance of the latter approach was verified using FRAP assessment of the fluorophore mobility. Significantly lower amplitudes of the cortical astrocytes swelling were detected by three-dimensional morphometry, when compared to the other two approaches. Consequently, it failed to detect temperature-induced cell volume changes. COMPARISON WITH EXISTING METHOD(S): The three most popular methods of cell volume measurement are compared to each other in this study. CONCLUSIONS: We show that the effectivity of global morphometry-based volumetric approaches drops with the increasing cell shape complexity or in the tissue context. In contrast to this, the performance of local fluorescence intensity monitoring, which is also fully capable of reflecting the instant cell volume variations remains stable, independent of the system used and application.


Subject(s)
Astrocytes/cytology , Astrocytes/physiology , Cell Size , Fibroblasts/cytology , Fibroblasts/physiology , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , 3T3 Cells , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Fluorescent Dyes , Hypertonic Solutions , Hypotonic Solutions , Isotonic Solutions , Mice , Microscopy, Confocal/methods
11.
Curr Pharm Des ; 23(33): 5056-5074, 2017.
Article in English | MEDLINE | ID: mdl-28699523

ABSTRACT

Brain ischemic injury represents one of the greatest medical challenges for the aging population in developed countries, yet despite strong efforts, possibilities to treat ischemic injury still remain poor. Stroke, the most common type of brain ischemic injury in humans, is caused by brain artery occlusion, and represents a focal form of ischemia, which leads to neuronal loss in the ischemic core, and glial scar formation in the penumbral region around the core. Such glial scar mainly comprises reactive astrocytes, reactive NG2 glia and activated microglia. Reactive astrocytes display distinct features when compared to healthy astroglia, including changes in their morphology, metabolism, gene expression profiles, production of extracellular matrix proteins or proliferation rate. Similarly to astrocytes in the healthy nervous tissue, reactive astrocytes surrounding the glial scar strongly influence the activity of surviving neurons around the ischemic lesion. Bringing insight into pathophysiological functions of reactive astrocytes within the glial scar might thus open new possibilities for stroke treatment. Here, we summarize the properties of reactive astrocytes, with emphasis on the expression and function of ion channels, transporters and neurotransmitter receptors; all of which possess the ability to change the functional state of astrocytes, such as the membrane equilibrium potentials for different ions. This may have major effects on the functioning of surviving neurons, consequently leading to changes in neuronal excitability and progression of secondary pathologies, such as epilepsy. Moreover, we provide possible clues for therapy, based on functional modulation of astrocytic ion transporting mechanisms.


Subject(s)
Astrocytes/metabolism , Brain Ischemia/metabolism , Homeostasis/physiology , Animals , Astrocytes/drug effects , Brain Ischemia/drug therapy , Gliosis/drug therapy , Gliosis/metabolism , Homeostasis/drug effects , Humans , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Neurons/drug effects , Neurons/metabolism
12.
J Neurochem ; 132(3): 286-300, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25279950

ABSTRACT

Accumulating evidence indicates that increased intracellular Na(+) concentration ([Na(+) ]i ) in astroglial cells is associated with the development of brain edema under ischemic conditions, but the underlying mechanisms are still elusive. Here, we report that in primary cultured rat cortical astrocytes, elevations of [Na(+) ]i reflecting those achieved during ischemia cause a marked decrease in hypotonicity-evoked current mediated by volume-regulated anion channel (VRAC). Pharmacological manipulations revealed that VRAC inhibition was not due to the reverse mode of the plasma membrane sodium/calcium exchanger. The negative modulation of VRAC was also observed in an astrocytic cell line lacking the predominant astrocyte water channel aquaporin 4, indicating that [Na(+) ]i effect was not mediated by the regulation of aquaporin 4 activity. The inward rectifier Cl(-) current, which is also expressed by cultured astrocytes, was not affected by [Na(+) ]i increase. VRAC depression by high [Na(+) ]i was confirmed in adult astrocytes, suggesting that it was not developmentally regulated. Altogether, these results provide the first evidence that intracellular Na(+) dynamics can modulate astrocytic membrane conductance that controls functional processes linked to cell volume regulation and add further support to the concept that limiting astrocyte intracellular Na(+) accumulation might be a favorable strategy to counteract the development of brain edema.


Subject(s)
Astrocytes/metabolism , Cerebral Cortex/metabolism , Ion Channels/drug effects , Sodium/pharmacology , Animals , Aquaporin 4/metabolism , Astrocytes/drug effects , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Chloride Channels/metabolism , Female , Male , Patch-Clamp Techniques , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Sodium/metabolism , Sodium-Calcium Exchanger/metabolism
13.
Glia ; 62(12): 2004-21, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25042871

ABSTRACT

Astrocytes respond to ischemic brain injury by proliferation, the increased expression of intermediate filaments and hypertrophy, which results in glial scar formation. In addition, they alter the expression of ion channels, receptors and transporters that maintain ionic/neurotransmitter homeostasis. Here, we aimed to demonstrate the expression of Hcn1-4 genes encoding hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in reactive astrocytes following focal cerebral ischemia (FCI) or global cerebral ischemia (GCI) and to characterize their functional properties. A permanent occlusion of the middle cerebral artery (MCAo) was employed to induce FCI in adult GFAP/EGFP mice, while GCI was induced by transient bilateral common carotid artery occlusion combined with hypoxia in adult rats. Using FACS, we isolated astrocytes from non-injured or ischemic brains and performed gene expression profiling using single-cell RT-qPCR. We showed that 2 weeks after ischemia reactive astrocytes express high levels of Hcn1-4 transcripts, while immunohistochemical analyses confirmed the presence of HCN1-3 channels in reactive astrocytes 5 weeks after ischemia. Electrophysiological recordings revealed that post-ischemic astrocytes are significantly depolarized, and compared with astrocytes from non-injured brains, they display large hyperpolarization-activated inward currents, the density of which increased 2-3-fold in response to ischemia. Their activation was facilitated by cAMP and their amplitudes were decreased by ZD7288 or low extracellular Na(+) concentration, suggesting that they may belong to the family of HCN channels. Collectively, our results demonstrate that regardless of the type of ischemic injury, reactive astrocytes express HCN channels, which could therefore be an important therapeutic target in poststroke therapy.


Subject(s)
Astrocytes/metabolism , Cyclic Nucleotide-Gated Cation Channels/metabolism , Gene Expression Regulation/physiology , Ischemia/pathology , Animals , Astrocytes/drug effects , Brain/cytology , Cyclic AMP/pharmacology , Cyclic Nucleotide-Gated Cation Channels/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , In Vitro Techniques , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Pyrimidines/pharmacology , Rats , Rats, Wistar , Sodium/metabolism
14.
PLoS One ; 7(5): e36816, 2012.
Article in English | MEDLINE | ID: mdl-22590616

ABSTRACT

Polydendrocytes (also known as NG2 glial cells) constitute a fourth major glial cell type in the adult mammalian central nervous system (CNS) that is distinct from other cell types. Although much evidence suggests that these cells are multipotent in vitro, their differentiation potential in vivo under physiological or pathophysiological conditions is still controversial.To follow the fate of polydendrocytes after CNS pathology, permanent middle cerebral artery occlusion (MCAo), a commonly used model of focal cerebral ischemia, was carried out on adult NG2creBAC:ZEG double transgenic mice, in which enhanced green fluorescent protein (EGFP) is expressed in polydendrocytes and their progeny. The phenotype of the EGFP(+) cells was analyzed using immunohistochemistry and the patch-clamp technique 3, 7 and 14 days after MCAo. In sham-operated mice (control), EGFP(+) cells in the cortex expressed protein markers and displayed electrophysiological properties of polydendrocytes and oligodendrocytes. We did not detect any co-labeling of EGFP with neuronal, microglial or astroglial markers in this region, thus proving polydendrocyte unipotent differentiation potential under physiological conditions. Three days after MCAo the number of EGFP(+) cells in the gliotic tissue dramatically increased when compared to control animals, and these cells displayed properties of proliferating cells. However, in later phases after MCAo a large subpopulation of EGFP(+) cells expressed protein markers and electrophysiological properties of astrocytes that contribute to the formation of glial scar. Importantly, some EGFP(+) cells displayed membrane properties typical for neural precursor cells, and moreover these cells expressed doublecortin (DCX)--a marker of newly-derived neuronal cells. Taken together, our data indicate that polydendrocytes in the dorsal cortex display multipotent differentiation potential after focal ischemia.


Subject(s)
Antigens, Differentiation/biosynthesis , Brain Ischemia/metabolism , Cell Differentiation , Cell Proliferation , Nerve Tissue Proteins/biosynthesis , Neuroglia/metabolism , Animals , Brain Ischemia/pathology , Disease Models, Animal , Doublecortin Protein , Mice , Mice, Transgenic , Neuroglia/pathology
15.
PLoS One ; 7(1): e29725, 2012.
Article in English | MEDLINE | ID: mdl-22253765

ABSTRACT

Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced green-fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K⁺ and Cl⁻ channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K(2P)) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K(2P) channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K⁺ effluxes. Additionally, the inhibition of Na⁺-K⁺-Cl⁻ co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K⁺ channels (Kir4.1), K(2P) channels (TREK-1 and TWIK-1) and Cl⁻ channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K(2P) channels.


Subject(s)
Astrocytes/cytology , Astrocytes/metabolism , Cerebral Cortex/cytology , Chloride Channels/metabolism , Glial Fibrillary Acidic Protein/metabolism , Green Fluorescent Proteins/metabolism , Potassium Channels/metabolism , Animals , Astrocytes/drug effects , Cell Size/drug effects , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Glucose/deficiency , Humans , In Vitro Techniques , Male , Membrane Transport Modulators/pharmacology , Mice , Mice, Transgenic , Models, Biological , Oxygen , Sex Characteristics , Sodium-Potassium-Chloride Symporters/metabolism , Symporters/metabolism , Vesicular Glutamate Transport Proteins/metabolism , K Cl- Cotransporters
16.
Cell Mol Neurobiol ; 31(7): 1113-22, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21630007

ABSTRACT

Adipose-derived stromal cells (ASCs) are an alternative source of stem cells for cell-based therapies of neurological disorders such as spinal cord injury (SCI). In the present study, we predifferentiated ASCs (pASCs) and compared their behavior with naïve ASCs in vitro and after transplantation into rats with a balloon-induced compression lesion. ASCs were predifferentiated into spheres before transplantation, then pASCs or ASCs were injected intraspinally 1 week after SCI. The cells' fate and the rats' functional outcome were assessed using behavioral, histological, and electrophysiological methods. Immunohistological analysis of pASCs in vitro revealed the expression of NCAM, NG2, S100, and p75. Quantitative RT-PCR at different intervals after neural induction showed the up-regulated expression of the glial markers NG2 and p75 and the neural precursor markers NCAM and Nestin. Patch clamp analysis of pASCs revealed three different types of membrane currents; however, none were fast activating Na(+) currents indicating a mature neuronal phenotype. Significant improvement in both the pASC and ASC transplanted groups was observed in the BBB motor test. In vivo, pASCs survived better than ASCs did and interacted closely with the host tissue, wrapping host axons and oligodendrocytes. Some transplanted cells were NG2- or CD31-positive, but no neuronal markers were detected. The predifferentiation of ASCs plays a beneficial role in SCI repair by promoting the protection of denuded axons; however, functional improvements were comparable in both the groups, indicating that repair was induced mainly through paracrine mechanisms.


Subject(s)
Adipose Tissue/physiology , Cell Differentiation/physiology , Multipotent Stem Cells/physiology , Spinal Cord Injuries/surgery , Stem Cell Transplantation/methods , Stromal Cells/transplantation , Adipose Tissue/cytology , Animals , Behavior, Animal/physiology , Cells, Cultured , Male , Motor Activity/physiology , Multipotent Stem Cells/cytology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rats, Wistar , Spinal Cord Injuries/pathology
17.
J Cereb Blood Flow Metab ; 31(3): 894-907, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20877389

ABSTRACT

To understand the structural alterations that underlie early and late changes in hippocampal diffusivity after hypoxia/ischemia (H/I), the changes in apparent diffusion coefficient of water (ADC(W)) were studied in 8-week-old rats after H/I using diffusion-weighted magnetic resonance imaging (DW-MRI). In the hippocampal CA1 region, ADC(W) analyses were performed during 6 months of reperfusion and compared with alterations in cell number/cell-type composition, glial morphology, and extracellular space (ECS) diffusion parameters obtained by the real-time iontophoretic method. In the early phases of reperfusion (1 to 3 days) neuronal cell death, glial proliferation, and developing gliosis were accompanied by an ADC(W) decrease and tortuosity increase. Interestingly, ECS volume fraction was decreased only first day after H/I. In the late phases of reperfusion (starting 1 month after H/I), when the CA1 region consisted mainly of microglia, astrocytes, and NG2-glia with markedly altered morphology, ADC(W), ECS volume fraction and tortuosity were increased. Three-dimensional confocal morphometry revealed enlarged astrocytes and shrunken NG2-glia, and in both the contribution of cell soma/processes to total cell volume was markedly increased/decreased. In summary, the ADC(W) increase in the CA1 region underlain by altered cellular composition and glial morphology suggests that considerable changes in extracellular signal transmission might occur in the late phases of reperfusion after H/I.


Subject(s)
Body Water/metabolism , Brain Ischemia/pathology , Brain Ischemia/physiopathology , CA1 Region, Hippocampal/pathology , Cell Proliferation , Hypoxia/pathology , Neuroglia/pathology , Animals , Astrocytes/pathology , Brain Ischemia/complications , CA1 Region, Hippocampal/physiopathology , Cell Count , Cell Death , Diffusion , Diffusion Magnetic Resonance Imaging , Extracellular Space/metabolism , Gliosis/etiology , Gliosis/pathology , Hypoxia/complications , Hypoxia/physiopathology , Imaging, Three-Dimensional , Immunohistochemistry , Male , Microscopy, Confocal , Rats , Rats, Wistar , Reperfusion , Time Factors
18.
Neurochem Int ; 57(7): 783-94, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20833221

ABSTRACT

Astrocytes and NG2 glia respond to CNS injury by the formation of a glial scar. Since the changes in K(+) currents in astrocytes and NG2 glia that accompany glial scar formation might influence tissue outcome by altering K(+) ion homeostasis, we aimed to characterize the changes in K(+) currents in hippocampal astrocytes and NG2 glia during an extended time window of reperfusion after ischemic injury. Global cerebral ischemia was induced in adult rats by bilateral, 15-min common carotid artery occlusion combined with low-pressure oxygen ventilation. Using the patch-clamp technique, we investigated the membrane properties of hippocampal astrocytes and NG2 glia in situ 2 hours, 6 hours, 1 day, 3 days, 7 days or 5 weeks after ischemia. Astrocytes in the CA1 region of the hippocampus progressively depolarized starting 3 days after ischemia, which coincided with decreased Kir4.1 protein expression in the gliotic tissue. Other K(+) channels described previously in astrocytes, such as Kir2.1, Kir5.1 and TREK1, did not show any changes in their protein content in the hippocampus after ischemia; however, their expression switched from neurons to reactive astrocytes, as visualized by immunohistochemistry. NG2 glia displayed increased input resistance, decreased membrane capacitance, increased delayed outwardly rectifying and A-type K(+) currents and decreased inward K(+) currents 3 days after ischemia, accompanied by their proliferation. Our results show that the membrane properties of astrocytes after ischemia undergo complex alterations, which might profoundly influence the maintenance of K(+) homeostasis in the damaged tissue, while NG2 glia display membrane currents typical of proliferating cells.


Subject(s)
Brain Ischemia/metabolism , CA1 Region, Hippocampal/metabolism , Cell Membrane/metabolism , Cell Polarity/physiology , Gliosis/metabolism , Membrane Potentials/physiology , Neuroglia/metabolism , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Animals , Brain Ischemia/pathology , Brain Ischemia/physiopathology , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Cell Membrane/pathology , Down-Regulation/genetics , Down-Regulation/physiology , Gliosis/genetics , Gliosis/pathology , Male , Neuroglia/pathology , Potassium Channels, Inwardly Rectifying/biosynthesis , Potassium Channels, Inwardly Rectifying/genetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...