Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 58(1): 2315-2338, 2023 07.
Article in English | MEDLINE | ID: mdl-37165733

ABSTRACT

When performing bimanual tasks, hands are typically not controlled individually but rather as a coupled system to achieve high spatiotemporal coordination. On a brain level, intrahemispheric and interhemispheric networks that control the left and right hand are necessary to exchange information between hemispheres and to couple movements. Behaviourally, coupling is, however, highly task-specific requiring, for example, to maintain a specific relative phase in cyclic tasks (e.g., inphase or antiphase) or to perform a role differentiated task where one hand is modulating and the other hands is stabilizing and needs to be kept as still as possible (e.g., holding a notepad and writing on it). In this study, we used electroencephalography to investigate functional brain network characteristics (task-related activation and connectivity) in bimanual force-control tasks with different coordination modes: inphase, antiphase and role-differentiated with the left- or right-hand stabilizing and the other hand manipulating. We aimed to examine (1) how network characteristics differ with respect to the coordination mode and (2) how they are related to the performance. Results revealed task-related differences in the overall activation and connectivity with role-differentiated tasks leading to higher desynchronization as compared to inphase and antiphase tasks. In addition, we showed that the strength of bimanual coupling is modulated task specifically through left-hemispheric networks including C3, FC3 and F3 electrodes. Results highlight the importance of the left frontocentral regions for bimanual coordination.


Subject(s)
Hand , Psychomotor Performance , Psychomotor Performance/physiology , Hand/physiology , Movement/physiology , Brain , Electroencephalography , Functional Laterality/physiology
2.
Front Behav Neurosci ; 12: 67, 2018.
Article in English | MEDLINE | ID: mdl-29720935

ABSTRACT

Motor control is associated with synchronized oscillatory activity at alpha (8-12 Hz) and beta (12-30 Hz) frequencies in a cerebello-thalamo-cortical network. Previous studies demonstrated that transcranial alternating current stimulation (tACS) is capable of entraining ongoing oscillatory activity while also modulating motor control. However, the modulatory effects of tACS on both motor control and its underlying electro- and neurophysiological mechanisms remain ambiguous. Thus, the purpose of this study was to contribute to gathering neurophysiological knowledge regarding tACS effects by investigating the after-effects of 10 Hz tACS and 20 Hz tACS at parietal brain areas on bimanual coordination and its concurrent oscillatory and hemodynamic activity. Twenty-four right-handed healthy volunteers (12 females) aged between 18 and 30 (M = 22.35 ± 3.62) participated in the study and performed a coordination task requiring bimanual movements. Concurrent to bimanual motor training, participants received either 10 Hz tACS, 20 Hz tACS or a sham stimulation over the parietal cortex (at P3/P4 electrode positions) for 20 min via small gel electrodes (3,14 cm2 Ag/AgCl, amperage = 1 mA). Before and three time-points after tACS (immediately, 30 min and 1 day), bimanual coordination performance was assessed. Oscillatory activities were measured by electroencephalography (EEG) and hemodynamic changes were examined using functional near-infrared spectroscopy (fNIRS). Improvements of bimanual coordination performance were not differently between groups, thus, no tACS-specific effect on bimanual coordination performance emerged. However, physiological measures during the task revealed significant increases in parietal alpha activity immediately following 10 Hz tACS and 20 Hz tACS which were accompanied by significant decreases of Hboxy concentration in the right hemispheric motor cortex compared to the sham group. Based on the physiological responses, we conclude that tACS applied at parietal brain areas provoked electrophysiological and hemodynamic changes at brain regions of the motor network which are relevant for bimanual motor behavior. The existence of neurophysiological alterations immediately following tACS, especially in the absence of behavioral effects, are elementary for a profound understanding of the mechanisms underlying tACS. The lack of behavioral modifications strengthens the need for further research on tACS effects on neurophysiology and behavior using combined electrophysiological and neuroimaging methods.

3.
Front Behav Neurosci ; 12: 63, 2018.
Article in English | MEDLINE | ID: mdl-29670514

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that allows the modulation of cortical excitability as well as neuroplastic reorganization using a weak constant current applied through the skull on the cerebral cortex. TDCS has been found to improve motor performance in general and motor learning in particular. However, these effects have been reported almost exclusively for unimanual motor tasks such as serial reaction time tasks, adaptation tasks, or visuo-motor tracking. Despite the importance of bimanual actions in most activities of daily living, only few studies have investigated the effects of tDCS on bimanual motor skills. The objectives of this review article are: (i) to provide a concise overview of the few existing studies in this area; and (ii) to discuss the effects of tDCS on bimanual motor skills in healthy volunteers and patients suffering from neurological diseases. Despite considerable variations in stimulation protocols, the bimanual tasks employed, and study designs, the data suggest that tDCS has the potential to enhance bimanual motor skills. The findings imply that the effects of tDCS vary with task demands, such as complexity and the level of expertise of the participating volunteers. Nevertheless, optimized stimulation protocols tailored to bimanual tasks and individual performance considering the underlying neural substrates of task execution are required in order to probe the effectiveness of tDCS in greater detail, thus creating an opportunity to support motor recovery in neuro-rehabilitation.

4.
Front Behav Neurosci ; 11: 130, 2017.
Article in English | MEDLINE | ID: mdl-28747875

ABSTRACT

Many daily activities, such as tying one's shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in persons with bilateral impairment of hand function. We therefore examined the impact of high-definition anodal tDCS (HD-atDCS) on the performance of a bimanual sequential sensorimotor task. Thirty-two volunteers (age M = 24.25; SD = 2.75; 14 females) participated in this double-blind study and performed sport stacking in six experimental sessions. In sport stacking, 12 specially designed cups must be stacked (stacked up) and dismantled (stacked down) in predefined patterns as fast as possible. During a pretest, posttest and follow-up test, two sport stacking formations (3-6-3 stack and 1-10-1 stack) were performed. Between the pretest and posttest, all participants were trained in sport stacking with concurrent brain stimulation for three consecutive days. The experimental group (STIM-M1) received HD-atDCS over both primary motor cortices (M1), while the control group received a sham stimulation (SHAM). Three-way analysis of variance (ANOVA) revealed a significant main effect of TIME and a significant interaction of TIME × GROUP. No significant effects were found for GROUP, nor for the three-way interaction of TIME × GROUP × FORMATION. Further two-way ANOVAs showed a significant main effect of TIME and a non-significant main effect for GROUP in both sport stacking formations. A significant interaction between TIME × GROUP was found only for the 3-6-3 formation, indicating superior performance gains for the experimental group (STIM-M1). To account and control for baseline influences on the outcome measurements, ANCOVAs treating pretest scores as covariates revealed a significant effect of the stimulation. From this, we conclude that bilateral HD-atDCS over both M1 improves motor performance in a bimanual sequential sensorimotor task. These results may indicate a beneficial use of tDCS for learning and recovery of bimanual motor skills.

5.
Neurosci Lett ; 643: 84-88, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28229937

ABSTRACT

While most research on brain stimulation with transcranial direct current stimulation (tDCS) targets unimanual motor tasks, little is known about its effects on bimanual motor performance. This study aims to investigate the effects of tDCS on unimanual as well as bimanual motor dexterity. We examined the effects of bihemispheric anodal high-definition tDCS (HD-atDCS) on both primary motor cortices (M1) applied concurrent with unimanual and bimanual motor training. We then measured the effects with the Purdue Pegboard Test (PPT) and compared them to a sham stimulation. Between a pretest and posttest, 31 healthy, right-handed participants practiced the PPT on three consecutive days and received - simultaneous to motor practice - either HD-atDCS over the left and right M1 (STIM, n=16) or a sham stimulation (SHAM, n=15). Five to seven days after the posttest, a follow-up test was conducted. Two-way ANOVAs with repeated measures showed significantly increased performance for all PPT-scores (p<0.001) in both groups. The scores for the right hand, both hands, and overall showed significant TIME x GROUP interactions (p<.05) with more improved performance for the STIM group, while left hand performance was not significantly altered. These effects were most pronounced in the follow-up test. Thus, we can conclude that a bihemispheric HD-atDCS of both M1's improves performance of unimanual and bimanual dexterity. The strength of the effects, however, depends on which hand is used in the unimanual task and the type of bimanual task performed.


Subject(s)
Functional Laterality/physiology , Hand/physiology , Motor Cortex/physiology , Psychomotor Performance/physiology , Adult , Electric Stimulation/methods , Evoked Potentials, Motor/physiology , Female , Humans , Male , Motor Skills/physiology , Transcranial Direct Current Stimulation/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...