Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Probiotics Antimicrob Proteins ; 11(2): 438-446, 2019 06.
Article in English | MEDLINE | ID: mdl-29667009

ABSTRACT

Important aspects of the selection of probiotics to be used for mixing in animal feed include host species specificity and probiotic cell survival during production and storage of their products. The research was to screen and investigate some probiotic properties of lactic acid bacteria (LAB) isolated from pig fecal samples. One hundred and thirty-eight representative LAB isolates, which were isolated from 51 pig fecal samples, were tested for acid and bile tolerance, antimicrobial susceptibility, antibacterial activity, potential adhesion to the cell surface, and survival rates when stored in varied microencapsulation forms: freeze-dried, spray-dried, and micro-beads. The antibacterial activity results of the ten LAB isolates, which were acid- (pH 2, 3 h) and bile- (50% (v/v) fresh pig bile, 8 h) tolerant and suitable for resisting the five antibiotics commonly used for treating pig infections with pathogenic indicator strains, showed that three isolates (L21, L80, L103) had strong inhibition to Escherichia coli, Salmonella group B, and Salmonella group D using co-culturing and agar spot assays. The three isolates had high hydrophobicity (65-73%) and did not show antagonistic growth against each other. All three selected isolates had greater than 80% survival in freeze-dried and micro-bead forms at 25-30 °C after 2 days of storage (80.4-86.75%, 7.31-7.89 log CFU/ml). Sequence analysis of the 16S rRNA genes demonstrated that the three isolates belong to Lactobacillus plantarum (strain L21 and strain L80) and L. paraplantarum (strain L103). The single and multiple strains of these bacteria may have potential use as probiotics in pig diets.


Subject(s)
Lactobacillus/physiology , Microbial Viability , Probiotics/pharmacology , Swine/microbiology , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Feces/microbiology , Lactobacillus/drug effects , Lactobacillus/genetics
2.
Trop Anim Health Prod ; 48(8): 1739-1745, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27492683

ABSTRACT

The aim of this study was to investigate the susceptibility of 93 Lactobacillus strains to seven antimicrobial agents, i.e., penicillin G, amoxicillin-clavulanic acid, vancomycin, tetracycline, streptomycin, ciprofloxacin, and sulfamethoxazole-trimethoprim, by disk diffusion test. The Lactobacillus strains were isolated from fecal samples taken from 90 healthy, food-producing animals (fattening pigs, free-grazing ducks, and beef cattle) and 30 healthy human subjects (1- to 6-year-olds) in Khon Kaen. The minimum inhibitory concentration (MIC) values of tetracycline and ciprofloxacin against all strains were determined using the E-test. All 93 Lactobacillus isolates were identified at the species level using 16S rRNA gene sequencing. The most common species of Lactobacillus isolated from fattening pigs, free-grazing ducks, beef cattle, and humans were L. reuteri (30 %), L. salivarius (46.7 %), L. acetotolerans (20 %), and L. gasseri (33.3 %), respectively. A total of 83 Lactobacillus strains were resistant to the examined antibiotics. Some strains were resistant to two to six types of antibiotics. More than 50 % of Lactobacillus species were intrinsically resistant to vancomycin, streptomycin, ciprofloxacin, and sulfamethoxazole-trimethoprim. The prevalence of acquired resistance to tetracycline was observed for Lactobacillus isolates from fattening pigs, humans, free-grazing ducks, and beef cattle at 92.3, 85.7, 77.8, and 68.4 %, respectively. These results demonstrate the impact of antibiotic use in human and veterinary medicine on antibiotic treatment efficacy and may support the spread of transferable antibiotic resistant genes to other bacteria via the food chain.


Subject(s)
Anti-Infective Agents/pharmacology , Cattle Diseases/drug therapy , Lactobacillus/drug effects , Red Meat , Swine Diseases/drug therapy , Animals , Anti-Infective Agents/therapeutic use , Cattle , Cattle Diseases/microbiology , Drug Resistance, Bacterial/genetics , Ducks , Feces/microbiology , Humans , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Swine , Swine Diseases/microbiology , Thailand , Tropical Climate
3.
J Anim Sci Technol ; 58: 26, 2016.
Article in English | MEDLINE | ID: mdl-27437119

ABSTRACT

The use of probiotics for human and animal health is continuously increasing. The probiotics used in humans commonly come from dairy foods, whereas the sources of probiotics used in animals are often the animals' own digestive tracts. Increasingly, probiotics from sources other than milk products are being selected for use in people who are lactose intolerant. These sources are non-dairy fermented foods and beverages, non-dairy and non-fermented foods such as fresh fruits and vegetables, feces of breast-fed infants and human breast milk. The probiotics that are used in both humans and animals are selected in stages; after the initial isolation of the appropriate culture medium, the probiotics must meet important qualifications, including being non-pathogenic acid and bile-tolerant strains that possess the ability to act against pathogens in the gastrointestinal tract and the safety-enhancing property of not being able to transfer any antibiotic resistance genes to other bacteria. The final stages of selection involve the accurate identification of the probiotic species.

SELECTION OF CITATIONS
SEARCH DETAIL
...