Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(27): 13211, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38952232

ABSTRACT

Correction for 'Photoluminescence modification of europium(III)-doped MAl2O4 (M = Zn, Mg) spinels induced by Ag@SiO2 core-shell nanoparticles' by Rodrigo A. Valenzuela-Fernández et al., Nanoscale, 2024, https://doi.org/10.1039/d4nr01526f.

2.
Nanoscale ; 16(27): 13161-13170, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38913015

ABSTRACT

In recent years, there has been an increasing interest in developing new inorganic compounds with exceptional properties for advanced materials. Specifically, compounds containing europium have attracted much attention due to their luminescent properties. These compounds are used in electronics, biotechnology, medicine, and catalysis. Eu is known for its characteristic red emission, which can be influenced by the environment. This study investigates the surface-enhancement luminescence of europium-doped spinel oxides using modified surface with silver (Ag@SiO2 core-shell) nanoparticles as the enhancers. The europium-doped spinels were synthesized through a sol-gel method, and characterization techniques were used to analyze their structure and morphology. Photoluminescence spectra exhibited characteristic Eu3+ transitions, with the hypersensitive transition being the most prominent. The interaction with an Ag@SiO2 modified-surface led to a significant increase in photoluminescence. The study also analyzed the photoluminescence excitation and lifetimes of the oxides, leading to a 7.3-fold increase in photoluminescence. The improvements observed in the luminescence of these tailor-made materials show their potential interest in next-generation technologies.

3.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921898

ABSTRACT

A new curcuminoid molecule (3) has been designed and synthesized, containing a central -(CH2)2-COOH chain at the α carbon of the keto-enol moiety in the structure. The carboxylic acid group is added to react with exposed amino groups on silica oxide nanoparticles (nSiO2), forming an amide bond to attach the curcuminoid moiety to the nSiO2 covalently. The Kaiser test quantifies the functionalization degree, yielding 222 µmol of curcuminoid per gram of nanoparticles. The synthesized hybrid nanosystem, nSiO2-NHCO-CCM, displays significant emission properties, with a maximum emission at 538 nm in dichloromethane, similar to curcuminoid 1 (without the central chain), which emits at 565 nm in the same solvent. Solvent-induced spectral effects on the absorption and emission bands of the new hybrid nanosystem are confirmed, similar to those observed for the free curcuminoid (1). The new nanosystem is evaluated in the presence of kerosene in water, showing an emission band at 525 nm as a detection response. The ability of nSiO2-NHCO-CCM to change its fluorescence when interacting with kerosene in water is notable, as it overcomes the limitation caused by the insolubility of free curcuminoid 1 in water, allowing for the exploitation of its properties when connected to the water-stable nanosystem for future detection studies.

4.
Photochem Photobiol Sci ; 23(1): 119-132, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38082202

ABSTRACT

The combined action of singlet oxygen (1O2) and photoinduced carbon monoxide (CO) released by tricarbonyl metal complexes is a promising synergic treatment against multi-resistant bacterial infections. In this work, we explore the use of a polydentate ligand (bpm = 2,2-bipyrimidine) that offers the opportunity to accommodate two metal centers exhibiting both singlet oxygen generation and carbon monoxide releasing properties in a single molecule. A series of monometallic ([(bpm)M(CO)3Br]; M = Mn, Re) and homo or hetero bimetallic ([Br(CO)3M(bpm)M'(CO)3Br]; M = Mn, Re) compounds were synthesized in moderate to good yields by modulating the metal precursor or the stoichiometry, also the syn:anti isomers ratio for the bimetallic complexes was dependent on the experimental conditions used. DFT modelling shows the anti-isomer is more stable than the syn-isomer by less than 8 kJ mol-1, which is consistent with those experimentally observed in terms of majority product and the effect of experimental conditions over the anti-syn ratio. The HOMO-LUMO gap is lower for the mono and bimetallic rhenium(I) compounds compared to the values for the manganese(I) analogues, while the heterometallic complex shows intermediate values for the anti-isomer. The photophysical characterization shows typical absorption and emission bands with MLCT character. In addition, CO-release and 1O2 generation quantum yields were evaluated for the monometallic Mnbpm and Rebpm homologues and compared with values obtained for the homo- and hetero-bimetallic complexes. Interestingly the replacement of a Mn(CO)3Br moiety in MnbpmMn by a Re(CO)3Br one makes the heterometallic MnbpmRe molecule a molecular oxygen sensitizer and partially retaining its carbon monoxide releasing ability.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122332, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36652804

ABSTRACT

The development of fluorescent pigments is an area of interest in several research fields due to their high sensitivity. In the current study-eight known and three new N,N-dimethylamino-chalcones (12a-k) were synthesized with good yields using the Claisen-Schmidt reaction. For each molecular system, the photophysical properties, including the maximum absorption wavelength (λAbsorption), molar absorption coefficient (ε), maximum excitation wavelength (λExcitation), maximum emission wavelength (λEmission), Stokes Shift (Δλ), fluorescence quantum yield (Φfl), fluorescence lifetime (τfl), radiative and non-radiative rate constants (kR and kNR, respectively) were evaluated. Variations in each of these properties were analyzed depending on the substituents present on each compound. To relate the chemical structures of the synthesized compounds to their photophysical properties, Hansch analysis (2D-QSPR) was applied. As a result of Hansch analysis, we found different photophysical properties related to molecular orbitals and the energy of their derivatives (Highest Occupied Molecular Orbital-HOMO, Lowest Unoccupied Molecular Orbital-LUMO, Difference between LUMO-HOMO-ΔLH, Chemical potential-µ, Hardness-η, Softness-S, and electrophilic global index-ω) as well as to the atomic charges on atoms C5, Cα, Cß, and CO. The application of this type of analysis has made it possible to understand and subsequently design new molecules with defined photophysical properties. Finally, the compounds were use as fluorescent pigment to get living cell imaging on breast cancer cells, obtaining the compound 12a as promissory alternative.


Subject(s)
Chalcones , Quantitative Structure-Activity Relationship , Chalcones/chemistry , Coloring Agents
6.
Polymers (Basel) ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36616417

ABSTRACT

In the search for solution-processable TADF materials as a light emitting layer for OLED devices, polymers have attracted considerable attention due to their better thermal and morphological properties in the film state with respect to small molecules. In this work, a new polymer (p-TPS-DMAC-TRZ) with thermally activated delayed fluorescence (TADF) light-emitting characteristics was prepared from a conjugation-break unit (TPS) and a well-known TADF core (DAMC-TRZ). This material was designed to preserve the photophysical properties of DAMC-TRZ, while improving other properties, such as thermal stability, promoted by its polymerization with a TPS core. Along with excellent solubility in common organic solvents such as toluene, chloroform and THF, the polymer (Mn = 9500; Mw = 15200) showed high thermal stability (TDT5% = 481 °C), and a Tg value of 265 °C, parameters higher than the reference small molecule DMAC-TRZ (TDT5% = 305 °C; Tg = 91 °C). The photoluminescence maximum of the polymer was centered at 508 nm in the solid state, showing a low redshift compared to DMAC-TRZ (500 nm), while also showing a redshift in solution with solvents of increasing polarity. Time-resolved photoluminescence of p-TPS-DMAC-TRZ at 298 K, showed considerable delayed emission in solid state, with two relatively long lifetimes, 0.290 s (0.14) and 2.06 s (0.50), and a short lifetime of 23.6 ns, while at 77 K, the delayed emission was considerably quenched, and two lifetimes in total were observed, 24.6 ns (0.80) and 180 ns (0.20), which was expected from the slower RISC process at lower temperatures, decreasing the efficiency of the delayed emission and demonstrating that p-TPS-DMAC-TRZ has a TADF emission. This is in agreement with room temperature TRPL measurements in solution, where a decrease in both lifetime and delayed contribution to total photoluminescence was observed when oxygen was present. The PLQY of the mCP blend films with 1% p-TPS-DMAC-DMAC-TRZ as a dopant was determined to be equal to 0.62, while in the pure film, it was equal to 0.29, which is lower than that observed for DMAC-TRZ (0.81). Cyclic voltammetry experiments showed similarities between p-TPS-DMAC-TRZ and DAMC-TRZ with HOMO and LUMO energies of -5.14 eV and -2.76 eV, respectively, establishing an electrochemical bandgap value of 2.38 eV. The thin film morphology of p-TPS-DMAC-TRZ and DMAC-TRZ was compared by AFM and FE-SEM, and the results showed that p-TPS-DMAC-TRZ has a smoother surface with fewer defects, such as aggregations. These results show that the design strategy succeeded in improving the thermal and morphological properties in the polymeric material compared to the reference small molecule, while the photophysical properties were mostly maintained, except for the PLQY determined in the pure films. Still, these results show that p-TPS-DMAC-TRZ is a good candidate for use as a light-emitting layer in OLED devices, especially when used as a host-guest mixture in suitable materials such as mCP.

7.
RSC Adv ; 11(51): 31959-31966, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-35495525

ABSTRACT

In this work, we describe the photoisomerization of facial rhenium(i) tricarbonyl complexes bearing P,N-bidentate pyridyl/phosphine ligands with different chelating rings and anions: RePNBr, RePNTfO, and RePNNBr, which are triggered under irradiation at 365 nm in solutions. The apparent photodegradation rate constants (k app) depend on the coordinating ability of the solvent, being lowest in acetonitrile. The k app value increases as the temperature rises, suggesting a reactive IL excited state thermally populated from the MLCT excited state involved. Using the Eyring equation, positive activation enthalpies (ΔH ≠) accompanied by high negative values for the activation entropy (ΔS ≠) were obtained. These results suggest whatever the P,N-ligand or anion, the reaction proceeds through a strongly solvated or a compact transition state, which is compatible with an associative mechanism for the photoisomerization. A 100-fold decrease in the log10 CFU value is observed for E. coli and S. aureus in irradiated solutions of the compounds, which follows the same tendency as their singlet oxygen generation quantum yield: RePNBr > RePNTfO > RePNNBr, while no antibacterial activity is observed in the darkness. This result indicates that the generation of singlet oxygen plays a key role in the antibacterial capacity of these complexes.

8.
Photochem Photobiol ; 97(1): 61-70, 2021 01.
Article in English | MEDLINE | ID: mdl-32627201

ABSTRACT

The new cyrhetrenyl acylhydrazone [(CO)3 Re(η5 -C5 H4 )-C(O)-NH-N = C(CH3 )-(2-C4 H2 S-5-NO2 )] (E-CyAH) has been designed, synthesized and fully characterized to study the effect of having a cyrhetrenyl fragment (sensitizer) covalently bonded to an acylhydrazone moiety (switch), on its photophysical and photochemical properties. The crystal structure reveals that E-CyAH adopts an E-configuration around the iminic moiety [-N = C(CH3 )]. The absorption spectrum of E-CyAH displays two bands at 270 and 380 nm, which are mainly ascribed to π â†’ π* intraligand (IL) and dπ  â†’ π* metal-to-ligand charge transfer (MLCT) transitions, being consistent with DFT/TD-DFT calculations. Upon 365 nm irradiation, E-CyAH photoisomerizes to Z-CyAH, as evidenced by UV-Vis and 1 H-NMR spectral changes, with a quantum yield value ΦE -CyAH → Z -CyAH of 0.30. Z-CyAH undergoes a first-order thermal back-isomerization process, with a relatively short half-life τ1/2 of 277 min. Consequently, E-CyAH was quantitatively recovered after 24 h, making it a fully reversible T-type molecular photoswitch. This remarkable behavior allows us to measure the individual photophysical properties for both isomers. In addition, E-CyAH and Z-CyAH efficiently photosensitize the generation of singlet oxygen (O2 (1 Δg )) with good yield (ΦΔ  = 0.342).

9.
Photochem Photobiol ; 97(1): 71-79, 2021 01.
Article in English | MEDLINE | ID: mdl-32619275

ABSTRACT

Toluidine blue O (TBO) is a water-soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO's hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO's solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited-state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic "tails." While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic "head" group and hydrophobic "tails" for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications.


Subject(s)
Fatty Acids/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/pharmacology , Tolonium Chloride/analogs & derivatives , Molecular Structure , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry , Spectrometry, Fluorescence , Tolonium Chloride/chemical synthesis , Tolonium Chloride/pharmacology
10.
Photochem Photobiol ; 94(5): 845-852, 2018 09.
Article in English | MEDLINE | ID: mdl-29446838

ABSTRACT

The reaction of 2,5-dibromopyrazine with N-Lithium pyrazolate in a 1:2 ratio leads to a mixture of 2-bromo-5-(1H-pyrazol-1-yl)pyrazine (I) and 2,5-di(1H-pyrazol-1-yl)pyrazine (II). The structures of I and II are highly planar. Two absorption bands can be observed for the compounds in the UV-Vis region, having ε in the order of 104  m-1  cm-1 . TD-DFT computed results support the nature of the lower energy absorptions as πpyrazine →π*pyrazine transitions, including an additional intraligand charge transfer transition for I (πpyrazol →π*pyrazine ). Upon excitation at 280 or 320 nm, the emission of both compounds is almost not affected by solvent polarity or oxygen presence, showing two bands for I and one for II in the 350-450 nm region. Emission of II follows a mono-exponential decay, while I decays following a bi-exponential law, hypothesized from πpyrazine →π*pyrazine and πpyrazol →π*pyrazine transitions. Photodegradation of I and II follows a first-order kinetic with constants of 1.18 × 10-2  min-1 and 0.13 × 10-2  min-1 , respectively. Results suggest that photodegradation of I starts with the loose of bromide followed by intermolecular pyrazolyl subtraction and ring opening. This path is not available for II, which is reflected in its enhanced photostability.

11.
Dalton Trans ; 46(26): 8611-8620, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28644503

ABSTRACT

The spectroscopic, electrochemical and photophysical properties of the first ReI organometallic organoimido-polyoxometalate complex [n-Bu4N][Mo6O18NC6H4-CH2-N3C2H2-Re-phen(CO)3] compared with all fragments are reported. The UV-Vis spectra are analysed using experimental and theoretical tools. In contrast to the reported studies in the literature, our results show that a new more intense band is present in the spectra of the hybrid ligand obscuring the intra-polyanion charge transfer. The electrochemical results show that the strong acceptor character of the polyoxometalate fragment is quenched by the condensation of the phenyl-triazole molecule.

12.
Photochem Photobiol Sci ; 16(8): 1268-1276, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28636041

ABSTRACT

In this paper, we explored the fluorescence properties of eight aurone derivatives bearing methoxy groups and bromine atoms as substituents in the benzene rings. All derivatives showed strong solvatochromic absorption and emission properties in solvents of different polarities. Some of them showed high fluorescence quantum yields, which make them potential compounds for sensing applications. The position of the methoxy groups in the benzofuranone moiety and the presence of bromine atoms in the benzene ring had a strong influence on the fluorescence behaviour of the aurones. DFT calculations allowed us to explain the emission properties of aurones and their solvatochromism, which was related to an excited state with strong charge-transfer character. Aurone 4 has the most promising characteristics showing a large difference in the quantum yields and large Stokes shifts depending on the solvent polarities. These results prompted us to explore some preliminary biological applications for aurone 4 such as the sensing of hydrophobic pockets of a protein and its thermotropic behaviour in liposomes.


Subject(s)
Benzofurans/chemistry , Models, Theoretical , Benzofurans/metabolism , Humans , Liposomes/chemistry , Liposomes/metabolism , Quantum Theory , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Solvents/chemistry , Spectrometry, Fluorescence
13.
Dalton Trans ; 46(5): 1567-1576, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28091640

ABSTRACT

Lithium diphenylphosphide unexpectedly provokes the ring-opening of tetrahydrofuran (THF) and by reaction with 3,6-dichloropyridazine leads to the formation of the ligand 3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine (P⋯N), which was isolated. The reaction of this ligand with the (Re(CO)3(THF)Br)2 dimer yields the novel complex [Br(CO)3Re(µ-3-chloro-6-(4-diphenylphosphinyl)butoxypyridazine)2Re(CO)3Br] (BrRe(P⋯N)(N⋯P)ReBr), which was crystallized in the form of a chloroform solvate, (C46H40Br2Cl2N4O8P2Re2)·(CHCl3). The monoclinic crystal (P21/n) displays a bimetallic cage structure with a symmetry inversion centre in the middle of the rhenium to rhenium line. The molecule shows two oxidation signals occurring at +1.50 V and +1.76 V which were assigned to the ReI/ReII and ReII/ReIII metal-centered couples, respectively, while signals observed at -1.38 V and -1.68 V were assigned to ligand centered reductions. Experimental and DFT/TDDFT results indicate that the UV-Vis absorption maximum of BrRe(P⋯N)(N⋯P)ReBr occurring near 380 nm displays a metal to ligand charge transfer (MLCT) character, which is consistent with CV results. Upon excitation at this wavelength, a weak emission (Φem < 1 × 10-3) is observed around 580 nm (in dichloromethane) which decays with two distinct lifetimes τ1 and τ2 of 24 and 4.7 ns, respectively. The prevalence of non-radiative deactivation pathways is consistent with efficient internal conversion induced by the high conformational flexibility of the P⋯N ligand's long carbon chain. Measurements in a frozen solvent at 77 K, where vibrational deactivation is hindered, show intense emission associated with the 3MLCT state. These results demonstrate that BrRe(P⋯N)(N⋯P)ReBr preserves the dual emitting nature previously reported for the mononuclear complex RePNBr, with emission associated with and states.

14.
PLoS One ; 10(6): e0129749, 2015.
Article in English | MEDLINE | ID: mdl-26098745

ABSTRACT

In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium.


Subject(s)
Flavonoids/chemistry , Free Radical Scavengers/chemistry , Singlet Oxygen/chemistry , Flavonoids/pharmacology , Free Radical Scavengers/pharmacology , Liposomes/chemistry
15.
J Phys Chem A ; 119(17): 3929-35, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25853537

ABSTRACT

The spectroscopic, electrochemical, and photophysical properties of the new complex [P,N-{(C6H5)2(C5H4N)P}Re(CO)3Br] are reported. The UV-vis spectrum in dichloromethane shows an absorption maximum centered at 315 nm and a shoulder at 350 nm. These absorption bands have been characterized to have MLCT character. Excitation at both wavelengths (maximum and shoulder) leads to an emission band centered at 550 nm. Cyclic voltammetry experiments show two ill-defined irreversible oxidation waves around +1.50 and 1.80 V that are assigned to Re(I)/Re(II) and Re(II)/Re(III) couples whereas an irreversible reduction signal centered at -1.80 V is likewise assigned to a ligand reduction process. These results support the proposal of the MLCT nature of the states implied by the emission of the complex. The luminescent decay fits to a biexponential function, where the lifetimes and emission quantum yields are dependent on the solvent polarity. DFT calculations suggest that dπ → π*pyridine and dπ → π*phenyl excited states may account for the existence of two decay lifetimes.

16.
Photochem Photobiol ; 90(1): 73-8, 2014 01.
Article in English | MEDLINE | ID: mdl-24112052

ABSTRACT

The electronic nature of substituents attached to the 4-aryl moiety of 1,4-dihydropyridines strongly affects the photophysical and photochemical behavior of these family of compounds. The presence of an electron donor substituent on the 4-aryl moiety (or the absence of electron-withdrawing ones) modifies the luminescence lifetimes (τ < 100 ps) and diminishes the photodecomposition quantum yields. For electron-withdrawing substituents, the photodegradation quantum yield is affected by the media, changing more than two orders of magnitude as the polarity is increased. Studies in micellar media allow us to conclude that 4-aryl-1,4-dihydropyridines are located near to the interface; however, the surface charge of micelles has no effect on the photodegradation rate constant or the photoproducts profile. The main conclusion of this work is that the photolability of 4-aryl-1,4-dihydropyridines can be significantly reduced by the incorporation of antioxidant moieties.

17.
Photochem Photobiol ; 89(6): 1327-34, 2013.
Article in English | MEDLINE | ID: mdl-23834078

ABSTRACT

The photophysical properties of 2-phenyl-naphtho[1,2-d][1,3]oxazole, 2(4-N,N-dimethylaminophenyl)naphtho[1,2-d][1,3]oxazole and 2(4-N,N-diphenylaminophenyl) naphtho[1,2-d][1,3]oxazole were studied in a series of solvents. UV-Vis absorption spectra are insensitive to solvent polarity whereas the fluorescence spectra in the same solvent set show an important solvatochromic effect leading to large Stokes shifts. Linear solvation energy relationships were employed to correlate the position of fluorescence spectra maxima with microscopic empirical solvent parameters. This study indicates that important intramolecular charge transfer takes place during the excitation process. In addition, an analysis of the solvatochromic behavior of the UV-Vis absorption and fluorescence spectra in terms of the Lippert-Mataga equation shows a large increase in the excited-state dipole moment, which is also compatible with the formation of an intramolecular charge-transfer excited state. We propose both naphthoxazole derivatives as suitable fluorescent probes to determine physicochemical microproperties in several systems and as dyes in dye lasers; consequence of their high fluorescence quantum yields in most solvents, their large molar absorption coefficients, with fluorescence lifetimes in the range 1-3 ns as well as their high photostability.


Subject(s)
Oxazoles/chemistry , Solvents/chemistry , Micelles
18.
J Org Chem ; 73(14): 5371-8, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18553978

ABSTRACT

The photophysics and photochemistry of a series of naphthoxazinones have been studied using a combination of methods ranging from steady-state and time-resolved spectroscopic techniques to product analysis. The photophysics of naphthoxazinone derivatives is very dependent on the structure: phenanthrene-like compounds exhibit higher fluorescence quantum yield than the less aromatic anthracene-like homologous. The latter, exhibit a substantial degree of charge transfer in the excited singlet state. These compounds are fairly photostable in the absence of additives, yielding a single photoproduct arising from the triplet state. The presence of electron donors such as amines increases the photoconsumption quantum yield and changes the product distribution, the primary photoproduct being a dihydronaphthoxazinone that photoreacts further yielding ultimately an oxazoline derivative.

19.
J Org Chem ; 68(8): 3009-16, 2003 Apr 18.
Article in English | MEDLINE | ID: mdl-12688767

ABSTRACT

Detection of O(2)((1)Delta(g)) phosphorescence emission, lambda(max) = 1270 nm, following laser excitation and steady-state methods was employed to determine the total rate constant, k(T), and the chemical reaction rate constant, k(R), for reaction between 5,6-disubstituted-2,3-dihydropyrazines and singlet oxygen in several solvents. Values of k(T) ranged from 0.26 x 10(5) M(-1) s(-1) in hexafluoro-2-propanol to 58.9 x 10(5) M(-1) s(-1) in N,N-dimethylacetamide for 5,6-dimethyl-2,3-dihydropyrazine (DMD) and from 5.74 x 10(5) M(-1) s(-1) in trifluoroethanol to 159.0 x 10(5) M(-1) s(-1) in tributyl phosphate for 5-methyl-6-phenyl-2,3-dihydropyrazine (MPD). Chemical reaction rate constants, k(R), for DMD are similar to k(T) in polar solvents such as propylencarbonate, whereas for MPD in this solvent, the contribution of the chemical channel to the total reaction is about of 4%. Dependence of the total rate constant on solvent microscopic parameters, alpha and pi, for DMD can be explained in terms of a reaction mechanism that involves formation of a perepoxide exciplex. Replacement of the methyl by a phenyl substituent enhances dihydropyrazine ring reactivity toward singlet oxygen and modifies the dependence of k(T) on solvent parameters, specially on the Hildebrand parameter. These results are explained in terms of an additional reaction path, involving a perepoxide-like exciplex stabilized by the interaction of the negative charge on the terminal oxygen of the perepoxide with the aromatic pi system.

SELECTION OF CITATIONS
SEARCH DETAIL
...