Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000674

ABSTRACT

In this study, we used a self-neutralizing system to counteract too acidic a pH, unsuitable for wood adhesives, and tested it on MUF resins augmented by the addition of citric acid or other organic acids, based on the addition of small percentages of hexamine or another suitable organic base to form an acid-base buffer. In this manner, the pH of the adhesive was maintained above the minimum allowed value of 4, and the strength results of wood particleboard and plywood bonded with this adhesive system increased due to the additional cross-linking imparted by the citric acid. Thus, the wood constituents at the wood/adhesive interface were not damaged/degraded by too low a pH, thus avoiding longer-term service failure of the bonded joints. The addition of the buffering system increased the strength of the bondline in both the plywood and particleboard, both when dry and after hot water and boiling water tests. The IB strength of the particleboard was then increased by 15-17% when dry but by 82% after boiling. For the plywood, the shear strengths when dry and after 3 h in hot water at 63 °C were, respectively, 37% and 90% higher than for the control. The improvement in the bonded panel strength is ascribed to multiple reasons: (i) the slower, more regular cross-linking rate due to the action of the buffer; (ii) the shift in the polycondensation-degradation equilibrium to the left induced by the higher pH and the long-term stability of the organic buffer; (iii) the additional cross-linking by citric acid of some of the MUF resin amine groups; (iv) the already known direct linking of citric acid with the carbohydrates and lignin constituents at the interface of the wood substrate; and (v) the likely covalent linking to the interfacial wood constituents of the prelinked MUF-citric acid resin by some of the unreacted citric acid carboxyl groups.

2.
Polymers (Basel) ; 16(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891495

ABSTRACT

The aim of this research work was to investigate the influence of parameters such as particle size, mass/solvent ratio, temperature and spray drying on the tannin extraction process in order to develop cost-effective methods with better environmental and structural performance. The pods of Acacia nilotica ssp. tomentosa (ANT) were fractionated into three fractions, coarse fraction (C) (>2 mm), medium fraction (M) (1-2 mm), and fine fraction (F) < 1 mµ), and extracted with different water-to-pod ratios (2:1, 4:1 and 6:1) at different temperatures (30, 50 and 70 °C). The best results were scaled up using the three fractions of ANT, its bark and the bark of Acacia seyal var. seyal (ASS). Part of their extract was spray dried. The tannin content and total polyphenolic materials were evaluated using standard methods. Their adhesives were tested for their tensile strength. Tannins of ASS were characterized by 13C NMR and MALDI-TOF. The results revealed that the fine fraction (F) gave the highest percentage of tannins in both small and scaled-up experiments. The results of the tensile strength conformed to the European standard. The 13C NMR spectra of ANT and ASS showed that the bark contained condensed tannins mainly consisting of procyanidins/prodelphinidin of 70%/30% and 60%/40%, respectively. MALDI-TOF spectra confirmed the results obtained by 13C NMR and detailed the presence of flavonoid monomers and oligomers, some of which were linked to short carbohydrate monomers or dimers.

3.
Int J Biol Macromol ; 269(Pt 1): 132043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702005

ABSTRACT

Starch adhesive is a commonly used bonding glue that is sustainable, formaldehyde-free and biodegradable. However, there are obviously some problems related to its high viscosity, poor water and mildew resistance. Hence, exploring a starch-based adhesive with good properties that satisfies the requirements of wood processing presents the context of the current research. Thus, corn starch was used as raw material to form oxidized starch (OCS) via oxidation using sodium periodate, it was reacted with a synthesis polyurea compound that prepared from hexanediamine-urea (HU) obtained by deamination to yield a oxidized starch-hexanediamine-urea adhesive (denoted hereafter as OCSHU). The oxidation process was optimized in terms of oxidant concentration, reaction time and temperature. Furthermore, the impact of HU addition on the mechanical properties of the adhesive was explored. Results indicate adhesive exhibited outstanding shear strength, when 13 % of NaIO4 was used as an oxidant to treat starch at 55 °C for 24 h, and involved in a subsequent reaction with 40 % of HU. The dry shear strength, 24 h cold water strength, 3 h hot water strength and 3 h boiling water strength are 1.84, 1.50, 1.32, and 1.31 MPa. Meantime, OCSHU adhesive solution revealed good storage stability whereas cured resin exhibited mildew resistance. The developed adhesive is a simple and green biomass wood adhesive.


Subject(s)
Adhesives , Starch , Water , Zea mays , Starch/chemistry , Water/chemistry , Adhesives/chemistry , Zea mays/chemistry , Oxidation-Reduction , Temperature , Shear Strength , Urea/chemistry
4.
Heliyon ; 10(4): e25582, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370179

ABSTRACT

The tannin extract of Cissus dinklagei was used in the preparation of a 3 % paraformaldehyde resin for the manufacture of particleboard. This tannin is of the procyanidin type associated with furan residues. The modulus of elasticity of the resin obtained after the thermomechanical analysis is 3825 MPa. The TGA performed on the panels obtained shows three degradation zones with a thermal stability zone between 74 and 210 °C. These panels have good thermomechanical properties. The values of the best density, internal bond, modulus of elasticity in flexion (MOE) and resistance to flexion (MOR) are respectively 658 kg/m3; 0.52 MPa; 2035.4 MPa; 16.3 MPa. These results classify this panel for generalinterior construction and furniture uses according to the NF EN 312 standard.

5.
Environ Monit Assess ; 196(3): 244, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326512

ABSTRACT

The aim of this research is to study the ability of Cactus leaves to act as a biocoagulants for the removal of lead in water. Different solvents, such as distilled water, NaCl, NaOH, and HCl, were used as chemical activators to extract the active components from the Cactus. The Cactus was utilized as an organic coagulant in five different forms: (i) Cactus juice (CJ); Cactus extract using (ii) distilled water (C-H2O); (iii) NaCl at 0.5 M concentration (C-NaCl); (iv) NaOH at 0.05 M concentration (C-NaOH); and (v) HCl at 0.05 M concentration (C-HCl). In order to establish the optimal conditions for the coagulation, this study employed the jar test as an experimental technique and the Box-Behnken design (BBD) as an experimental approach. According to BBD, there are three factors (k = 3), namely pH, biocoagulant dosage, and settling time. The R2 and R2 adjusted for all coagulants were close to 100%, confirming the validity of all the mathematical models. The results were significant; the highest lead removal efficiencies were 98.11%, 98.34%, 95.65, 96.19%, and 97.49%, utilizing CJ, C-H2O, C-NaCl, C-HCl, and C-NaOH as natural coagulants. The Cactus has been characterized using FTIR, XRD, and SEM to identify the active components that remove lead.


Subject(s)
Cactaceae , Drinking Water , Water Purification , Flocculation , Sodium Chloride , Sodium Hydroxide , Environmental Monitoring , Industrial Waste/analysis , Lead , Water Purification/methods
6.
Int J Biol Macromol ; 258(Pt 2): 128994, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38157632

ABSTRACT

Non-isocyanate polyurethane (NIPU) as a new type of polyurethane material has become a hot research topic in the polyurethane industry due to its no utilization of toxic isocyanates during the synthesis process. And the developing on recyclable biomass materials has also much attention in the industrial sector, hence the preparation and application of bio-based NIPU has also become a very meaningful study work. So, in this paper, tannin as a biomass material was used to synthesize tannin based non-isocyanate polyurethanes (TNIPU) resin, and then successfully prepared a self-blowing TNIPU foam at room temperature by using formic acid as initiator and glutaraldehyde as cross-linking agent. The compressive strength of this foam as high as 0.8 MPa, which is an excellent compressive performance. Meanwhile it will return to the state before compression when removing the pressure. This indicating that the foam has good toughness. In addition, formic acid can react with the amino groups in TNIPU to form amide substances, and generated enough heat to initiate the foaming process. Glutaraldehyde, as a crosslinking agent, reacts with the amino group in TNIPU to form a network structure system. By scanning electron microscope (SEM) observation of the cell shapes, it can be seen that the foam cells were uniform in size and shape, and the cell pores showed open and closed cells. The limiting oxygen index (LOI) tested value of this TNIPU foam is 24.45 % without any flame retardant added, but compared to the LOI value of polyurethane foam (17 %-19 %), TNIPU foam reveal a better fire resistance. It has a wider application prospect.


Subject(s)
Formates , Isocyanates , Polyurethanes , Tannins , Glutaral
7.
Int J Biol Macromol ; 251: 126254, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37567545

ABSTRACT

Starch is one of the important raw materials for the preparation of biomass adhesives for its good viscosity and low-cost properties. However, the drawbacks of poor water resistance and bonding performance seriously restrict its application in the wood industry. To resolve those problems, an environment-friendly renewable, and high water resistance starch-based adhesive (OSTH) was prepared with oxidized starch and hexanediamine by Schiff base reaction. In order to optimize the adhesive preparation process, the effect of different oxidation times and oxidant addition on the mechanical performance of plywood were investigated. In addition, the curing behavior characteristics, thermomechanical properties, and thermal stability of the OSTH adhesives were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetric analysis (TG). Fourier-transform infrared (FTIR) spectrometry and Liquid Chromatography-Mass Spectrometry (LC-MS) were used to explain the reaction mechanisms involved. The results show this adhesive has an excellent bonding performance at the oxidation time of 12 h with 11 % (w/w, dry starch basis) NaIO4 as an oxidant. The dry shear strength, 24-hour cold water, and 3-hour hot water (63 °C) soaking shear strength of the plywood bonded with this resin were respectively 1.87 MPa, 0.96 MPa, and 0.91 MPa, which satisfied the standard requirement of GB/T 9846-2015 (≥0.7 MPa). Thus, this study provided a potential strategy to prepare starch-based wood adhesives with good bonding performance and water resistance.

8.
Polymers (Basel) ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050359

ABSTRACT

Poly(furfuryl alcohol) is a thermostable biobased thermoset. The polymerization of furfuryl alcohol (FA) is sensitive to a number of side reactions, mainly the opening of the furan ring into carbonyl species. Such carbonyls can be used to introduce new properties into the PFA materials through derivatization. Hence, better understanding of the furan ring opening is required to develop new applications for PFA. This article studies the structural discrepancies between a PFA prepared in neat conditions versus a PFA prepared in aqueous conditions, i.e., with more carbonyls, through NMR and MALDI ToF. Overall, the PFA prepared in water exhibited a structure more heterogeneous than the PFA prepared in neat conditions. The presence of ketonic derivatives such as enols and ketals were highlighted in the case of the aqueous PFA. In this line, the addition of water at the beginning of the polymerization stimulated the production of aldehydes by a factor two. Finally, the PFA prepared in neat conditions showed terminal lactones instead of aldehydes.

9.
Polymers (Basel) ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850174

ABSTRACT

Condensed tannin copolymerized with hyperbranched tris(2-aminoethyl)amine-urea formed by amine-amido deamination yields a particleboard thermosetting adhesive without any aldehydes satisfying the requirements of relevant standards for the particleboard internal bond strength. The tannin-triamine-urea cures well at 180 °C, a relatively low temperature for today's particleboard hot pressing. As aldehydes were not used, the formaldehyde emission was found to be zero, not even in traces due to the heating of wood. The effect is ascribed to the presence of many reactive sites, such as amide, amino, and phenolic groups belonging to the three reagents used. The tannin appears to function as an additional cross-linking agent, almost a nucleating agent, for the triamine-urea hyperbranched oligomers. Chemical analysis by MALDI ToF and 13C NMR has shown that the predominant cross-linking reaction is that of the substitution of the tannin phenolic hydroxyls by the amino groups of the triamine. The reaction of tannin with the still-free amide groups of urea is rather rare, but it may occur with the rarer tannin flavonoid units in which the heterocyclic ring is opened. Due to the temperature gradient between the surfaces and the board core in the particleboard during hot pressing, the type and the relative balance of covalent and ionic bonds in the resin structure may differ in the surfaces and the board core.

10.
Polymers (Basel) ; 14(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36433152

ABSTRACT

Tannin-furanic foams were prepared with a good yield using the addition of relatively small proportions of a polyflavonoid tannin extract esterified with either palmitic acid, oleic acid, or lauric acid by its reaction with palmitoyl chloride, oleyl chloride, or lauryl chloride. FTIR analysis allowed us to ascertain the esterification of the tannin, and MALDI-TOF analysis allowed us to identify a number of multi-esterified flavonoid oligomers as well as some linked to residual carbohydrates related to the equally esterified tannin. These foams presented a markedly decreased surface friability or no friability at all, and at densities lower than the standard foam they were compared to. Equally, these experimental foams presented a much-improved water repellence, as indicated by their initial wetting angle, its small variation over time, and its stabilization at a high wetting angle value, while the wetting angle of the standard foam control went to zero very rapidly. This conclusion was supported by the calculation of the total surface energy of their surfaces as well as of their dispersive and polar components.

11.
Materials (Basel) ; 15(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888409

ABSTRACT

In this work, to better understand the bonding process of plastic plywood panels, the effects of recycled low-density polyethylene (rLDPE) film of three thicknesses (50, 100, and 150 µm) and veneers of four various wood species (beech, birch, hornbeam, and poplar) on the properties of panels were studied. The obtained properties were also compared with the properties of plywood panels bonded by virgin low-density polyethylene (LDPE) film. The results showed that properties of plywood samples bonded with rLDPE and virgin LDPE films differ insignificantly. Samples bonded with rLDPE film demonstrated satisfactory physical and mechanical properties. It was also established that the best mechanical properties of plywood are provided by beech veneer and the lowest by poplar veneer. However, poplar plywood had the best water absorption and swelling thickness, and the bonding strength at the level of birch and hornbeam plywood. The properties of rLDPE-bonded plywood improved with increasing the thickness of the film. The panels bonded with rLDPE film had a close-to-zero formaldehyde content (0.01-0.10 mg/m2·h) and reached the super E0 emission class that allows for defining the laboratory-manufactured plastic-bonded plywood as an eco-friendly composite.

12.
Polymers (Basel) ; 14(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890595

ABSTRACT

Glyoxal is considered to be the most likely substitute for formaldehyde to synthesize resin adhesives for wood bonding due to its reactivity, structural characteristics, being non-toxic, low volatility, and acceptable cost. Regrettably, the performance of the resin synthesized using glyoxal to directly replace all formaldehyde is not totally satisfactory, especially as it has almost no water resistance. This makes such a simple alternative fail to be suitable for industrial production. To prepare an environment-friendly glyoxal-based adhesive with good bonding performance, the work presented here relies first on reacting citric acid and hexamethylene diamine, producing a polyamide, with glyoxal, and then crosslinking it, thus synthesizing a thermosetting resin (namely CHG) adhesive and applying it for plywood bonding. The plywood prepared exhibits excellent dry and wet shear strength, which are better than GB/T9846-2015 standard requirements (≥0.7 MPa), and even after being soaked in hot water at 63 °C for 3 h, its strength is still as high as 1.35 MPa. The CHG resin is then potentially an adhesive for industrial application for replacing UF (urea-formaldehyde) and MUF (melamine-urea-formaldehyde) adhesives for wood composites.

13.
Polymers (Basel) ; 14(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683838

ABSTRACT

The purpose of this study was to prepare low-viscosity lignin-based polyurethane (LPU) resins for the modification of ramie (Boehmeria nivea (L.) Gaudich) fiber via impregnation to improve the fiber's thermal and mechanical properties. Low-viscosity LPU resins were prepared by dissolving lignin in 20% NaOH and then adding polymeric 4,4-methane diphenyl diisocyanate (pMDI, 31% NCO) with a mole ratio of 0.3 NCO/OH. Ramie fiber was impregnated with LPU in a vacuum chamber equipped with a two-stage vacuum pump. Several techniques such as Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry, thermogravimetric analysis, pyrolysis-gas chromatography-mass spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray (EDX), and a universal testing machine were used to characterize lignin, LPU, and ramie fiber. The LPU resins had low viscosity ranging from 77 to 317 mPa·s-1. According to FTIR and EDX analysis, urethane bonds were formed during the synthesis of LPU resins and after impregnation into ramie fibers. After impregnation, the reaction between the LPU's urethane group and the hydroxy group of ramie fiber increased thermal stability by an average of 6% and mechanical properties by an average of 100% compared to the untreated ramie fiber. The highest thermal stability and tensile strength were obtained at ramie impregnated with LPU-ethyl acetate for 30 min, with a residual weight of 22% and tensile strength of 648.7 MPa. This study showed that impregnation with LPU resins can enhance the thermal and mechanical properties of fibers and increase their wider industrial utilization in value-added applications.

14.
Article in English | MEDLINE | ID: mdl-35543426

ABSTRACT

Biomass-based adhesives have attracted much attention due to their eco-friendly, sustainable characteristics compared to formaldehyde-based adhesives; however, their low bonding strength and water resistance restrict their application. Thus, developing a high-performance biomass-based adhesive with excellent bonding strength and water resistance is necessary. In this work, a fully biomass-based citric acid-glucose (CAG) adhesive was produced by the esterification reaction of glucose and citric acid, which was validated by Fourier transform infrared (FT-IR), 13C nuclear magnetic resonance (13C NMR), and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the properties of the CAG adhesive were tuned considering the effects of reaction time and molar ratio of citric acid/glucose (CA/G). It was revealed that increasing the molar ratio of CA/G is more advantageous to improve the shear strength and water resistance of plywood than the reaction time. The dry and wet strengths of plywood bonded by the CAG adhesive can reach the standard requirement (≥0.7 MPa) when the molar ratios of CA/G were more than 0.6 and the reaction time was 1 h. These results were better than those bonded by the urea-formaldehyde (UF) resin. Therefore, this green adhesive shows great potential to replace the existing industrial UF resin adhesives.

15.
Polymers (Basel) ; 14(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631993

ABSTRACT

The sustainability, performance, and cost of production in the plywood industry depend on wood adhesives and the hot-pressing process. In this study, a cold-setting plywood adhesive was developed based on polyvinyl alcohol (PVOH), high-purity lignin, and hexamine. The influence of lignin content (10%, 15%, and 20%) and cold-pressing time (3, 6, 12, and 24 h) on cohesion, adhesion, and formaldehyde emission of plywood were investigated through physical, chemical, thermal, and mechanical analyses. The increased lignin addition level lowered the solids content, which resulted in reduced average viscosity of the adhesive. As a result, the cohesion strength of the adhesive formulation with 10% lignin addition was greater than those of 15% and 20% lignin content. Markedly, the adhesive formulation containing a 15% lignin addition level exhibited superior thermo-mechanical properties than the blends with 10% and 20% lignin content. This study showed that 10% and 15% lignin content in the adhesive resulted in better cohesion strength than that with 20% lignin content. However, statistical analysis revealed that the addition of 20% lignin in the adhesive and using a cold-pressing time of 24 h could produce plywood that was comparable to the control polyurethane resins, i.e., dry tensile shear strength (TSS) value of 0.95 MPa, modulus of rupture (MOR) ranging from 35.8 MPa, modulus of elasticity (MOE) values varying from 3980 MPa, and close-to-zero formaldehyde emission (FE) of 0.1 mg/L, which meets the strictest emission standards. This study demonstrated the feasibility of fabricating eco-friendly plywood bonded with PVOH-lignin-hexamine-based adhesive using cold pressing as an alternative to conventional plywood.

16.
Polymers (Basel) ; 14(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35335481

ABSTRACT

This is a study of concept on the initial application for wood adhesives totally biosourced from the covalent reaction between soy protein isolate (SPI) and a commercial flavonoid tannin, namely quebracho tannin. The adhesive is composed exclusively of the two vegetable biomaterials mentioned and thus is totally biosourced and non-toxic, as tannin has been classified as being not at all toxic by the European Commission REACH program. The pre-reaction between the two yielded the best plywood bonding results when limited to a temperature of 40 °C, final cross-linking being achieved during the plywood higher temperature hot pressing procedure, as for any other thermosetting adhesive. Pre-reaction at higher temperatures, namely 60 °C and 80 °C, achieved extensive premature cross-linking that lost any activity to cross-link further when hot pressed for preparing plywood. The reaction was followed by thermomechanical analysis, by matrix assisted laser desorption ionization time of flight (MALDI ToF) mass spectrometry, and by plywood shear strength tested dry, after a 24 h cold water soak and 1 h in boiling water. The adhesive of this approach lends itself to be further reinforced by the multitude of approaches on soy resins already developed by several other research groups.

17.
Food Funct ; 13(1): 316-326, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34897340

ABSTRACT

Maritime pine bark is a rich source of polyphenolic compounds and is commonly employed as a herbal supplement worldwide. This study was designed to check the potential of maritime pine tannin extract (MPTE) in anticancer therapy and to determine the underlying mechanism of action. Our results showed that MPTE, containing procyanidin oligomers and lanostane type terpenoids, has an inhibitory effect on cancer cell proliferation through cell cycle arrest in the G2/M phase. Treatment with MPTE also induced apoptosis in a concentration-dependent manner in human cancer cell lines (HeLa and U2OS), as evidenced by the enhanced activation of caspase 3 and the cleavage of PARP along with the downregulation of the antiapoptotic protein Bcl-2. Interestingly, human non-cancerous fibroblasts are much less sensitive to MPTE, suggesting that it preferentially targets cancer cells. MPTE played a pro-oxidant role in cancer cells and promoted the expression of the p73 tumor suppressor gene in p53-deficient cells. It also downregulated the protooncogenic proteins UHRF1 and DNMT1, mediators of the DNA methylation machinery, and reduced the global methylation levels in HeLa cells. Overall, our results show that maritime pine tannin extract can play a favorable role in cancer treatment, and can be further explored by the pharmaceutical industry.


Subject(s)
Antineoplastic Agents/pharmacology , CCAAT-Enhancer-Binding Proteins , Epigenesis, Genetic/drug effects , Pinus/chemistry , Tannins/pharmacology , Ubiquitin-Protein Ligases , Apoptosis/drug effects , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Down-Regulation/drug effects , HeLa Cells , Humans , Plant Bark/chemistry , Plant Extracts/pharmacology , Tumor Protein p73/genetics , Tumor Protein p73/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
18.
Polymers (Basel) ; 15(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36616570

ABSTRACT

The Whilhelmy method of contact angle, wood thermal properties (TG/DTG), infrared spectroscopy, etc. was used to define the hydrophobicity of heat-treated beech and fir wood at increasing temperatures between 120 °C and 300 °C. By exposure to wet conditions during 1 week, the hydrophobic character obtained by the heat treatment remains constant heat-treated. Heat induced wood hydrophobation, was shown by CP MAS 13C NMR and MALDI ToF mass spectrometry to be mainly caused by furanic moieties produced from heat-induced hemicelluloses degradation. This is caused by the acid environment generated by the hydrolysis of the hemicelluloses acetyl groups. Furfural polymerizes to linear and branched oligomers and finally to water repellent, insoluble furanic resins. The water repellent, black colored, cross-linked polymerized furanic network is present throughout the heat-treated wood. Wood darkening as well as its water repellency due to increasing proportions of black colored furanic resins increase as a function of the increase with treating temperature, becoming particularly evident in the 200 to 300 °C treating temperature range.

19.
Polymers (Basel) ; 13(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34685261

ABSTRACT

The research aim of this work is to determine the influence of lignin modification methods on lignin-phenol-formaldehyde (LPF) adhesive properties. Thus, glyoxal (G), phenol (P), ionic liquid (IL), and maleic anhydride (MA) were used to modify lignin. The modified lignins were used for phenol substitution (50 wt%) in phenol-formaldehyde adhesives. The prepared resins were then used for the preparation of wood particleboard. These LPF resins were characterized physicochemically, namely by using standard methods to determine gel time, solids content, density, and viscosity, thus the physicochemical properties of the LPF resins synthesized. The panels dimensional stability, formaldehyde emission, bending modulus, bending strength, and internal bond (IB) strength were also measured. MA-modified lignin showed by differential scanning calorimetry (DSC) the lowest temperature of curing than the resins with non-modified lignin and modified with IL, phenolared lignin, and glyoxal. LPF resins with lignin treated with maleic anhydride presented a shorter gel time, higher viscosity, and solids content than the resins with other lignin modifications. Equally, the particleboard panels prepared with LPF resins with maleic anhydride or with ionic liquid had the lowest formaldehyde emission and the highest mechanical strength among all the synthesized resins. The dimensional stability of all panels bonded with modified lignin LPF resins presented no difference of any significance.

20.
Polymers (Basel) ; 13(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502919

ABSTRACT

Rapid global population growth has led to an exponential increase in the use of disposable materials with a short life span that accumulate in landfills. The use of non-biodegradable materials causes severe damage to the environment worldwide. Polymers derived from agricultural residues, wood, or other fiber crops are fully biodegradable, creating the potential to be part of a sustainable circular economy. Ideally, natural fibers, such as the extremely strong fibers from hemp, can be combined with matrix materials such as the core or hurd from hemp or kenaf to produce a completely renewable biomaterial. However, these materials cannot always meet all of the performance attributes required, necessitating the creation of blends of petroleum-based and renewable material-based composites. This article reviews composites made from natural and biodegradable polymers, as well as the challenges encountered in their production and use.

SELECTION OF CITATIONS
SEARCH DETAIL
...