Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 46(2): 1909-1926, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37775702

ABSTRACT

Oral health plays a significant role in the quality of life and overall well-being of the aging population. However, age-related changes in oral health are not well understood due to challenges with current animal models. In this study, we analyzed the oral health and microbiota of a short-lived non-human primate (i.e., marmoset), as a step towards establishing a surrogate for studying the changes that occur in oral health during human aging. We investigated the oral health of marmosets using cadaveric tissues in three different cohorts: young (aged ≤6 years), middle-aged, and older (>10 years) and assessed the gingival bacterial community using analyses of the V3-V4 variable region of 16S rRNA gene. The oldest cohort had a significantly higher number of dental caries, increased dental attrition/erosion, and deeper periodontal pocket depth scores. Oral microbiome analyses showed that older marmosets had a significantly greater abundance of Escherichia-Shigella and Propionibacterium, and a lower abundance of Agrobacterium/Rhizobium at the genus level. Alpha diversity of the microbiome between the three groups showed no significant differences; however, principal coordinate analysis and non-metric multidimensional scaling analysis revealed that samples from middle-aged and older marmosets were more closely clustered than the youngest cohort. In addition, linear discriminant analysis effect size (LEFSe) identified a higher abundance of Esherichia-Shigella as a potential pathogenic biomarker in older animals. Our findings confirm that changes in the oral microbiome are associated with a decline in oral health in aging marmosets. The current study suggests that the marmoset model recapitulates some of the changes in oral health associated with human aging and may provide opportunities for developing new preventive strategies or interventions which target these disease conditions.


Subject(s)
Callithrix , Dental Caries , Humans , Animals , Aged , Middle Aged , Callithrix/genetics , Callithrix/microbiology , Oral Health , RNA, Ribosomal, 16S/genetics , Quality of Life , Aging
2.
Am J Physiol Endocrinol Metab ; 321(1): E90-E104, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34029162

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disorders ranging from hepatic steatosis [excessive accumulation of triglycerides (TG)] to nonalcoholic steatohepatitis, which can progress to cirrhosis and hepatocellular carcinoma. The molecular pathogenesis of steatosis and progression to more severe NAFLD remains unclear. Obesity and aging, two principal risk factors for NAFLD, are associated with a hyperadrenergic state. ß-Adrenergic responsiveness in liver increases in animal models of obesity and aging, and in both is linked to increased hepatic expression of ß2-adrenergic receptors (ß2-ARs). We previously showed that in aging rodents intracellular signaling from elevated hepatic levels of ß2-ARs may contribute to liver steatosis. In this study we demonstrate that injection of formoterol, a highly selective ß2-AR agonist, to mice acutely results in hepatic TG accumulation. Further, we have sought to define the intrahepatic mechanisms underlying ß2-AR mediated steatosis by investigating changes in hepatic expression and cellular localization of enzymes, transcription factors, and coactivators involved in processes of lipid accrual and disposition-and also functional aspects thereof-in livers of formoterol-treated animals. Our results suggest that ß2-AR activation by formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, increased but incomplete ß-oxidation of fatty acids with accumulation of potentially toxic long-chain acylcarnitine intermediates, and reduced TG secretion-all previously invoked as contributors to fatty liver disease. Experiments are ongoing to determine whether sustained activation of hepatic ß2-AR signaling by formoterol might be utilized to model fatty liver changes occurring in hyperadrenergic states of obesity and aging, and thereby identify novel molecular targets for the prevention or treatment of NAFLD.NEW & NOTEWORTHY Results of our study suggest that ß2-adrenergic receptor (ß2-AR) activation by agonist formoterol leads to increased hepatic TG synthesis and de novo lipogenesis, incomplete ß-oxidation of fatty acids with accumulation of long-chain acylcarnitine intermediates, and reduced TG secretion. These findings may, for the first time, implicate a role for ß2-AR responsive dysregulation of hepatic lipid metabolism in the pathogenetic processes underlying NAFLD in hyperadrenergic states such as obesity and aging.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Fatty Liver/chemically induced , Non-alcoholic Fatty Liver Disease/physiopathology , Receptors, Adrenergic, beta-2/physiology , Animals , Carnitine/analogs & derivatives , Carnitine/analysis , Formoterol Fumarate/pharmacology , Gene Expression/drug effects , Hepatic Stellate Cells , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Lipogenesis/genetics , Liver/chemistry , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/chemically induced , Phosphatidate Phosphatase/analysis , Triglycerides/biosynthesis
3.
J Antimicrob Chemother ; 73(2): 448-451, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29177447

ABSTRACT

Background: Echinocandins are recommended as first-line therapy against Candida glabrata infections, although increased resistance to this class has been reported worldwide and they are currently only available for parenteral administration. SCY-078 is an investigational glucan synthase inhibitor that is orally available. Objectives: To evaluate the in vivo efficacy of SCY-078 in an experimental model of invasive candidiasis due to WT and echinocandin-resistant C. glabrata isolates. Methods: Neutropenic ICR mice were inoculated intravenously with a WT isolate (SCY-078 and caspofungin MICs 0.25 and 0.125 mg/L, respectively) or an echinocandin-resistant isolate (SCY-078 and caspofungin MICs 1 and 0.5 mg/L, respectively). Treatment with placebo, SCY-078 (8, 30 or 40 mg/kg orally every 12 h) or caspofungin (1 mg/kg by intraperitoneal injection once daily) began 24 h later. Kidney fungal burden was measured on day 8 post-inoculation. Results: Significant reductions in kidney fungal burden were observed with 30 mg/kg SCY-078 against both isolates and with the 40 mg/kg dose against the echinocandin-resistant isolate. These results were supported by SCY-078 plasma concentration data at the higher doses, where levels above the MICs for both isolates were observed 12 h after the last oral dose. Reductions in fungal burden were also observed with caspofungin against the WT isolate, but not against the resistant isolate. Conclusions: SCY-078 demonstrated in vivo efficacy against infections caused by both WT and echinocandin-resistant C. glabrata isolates in this experimental model. This orally available glucan synthase inhibitor has potential as a therapy against echinocandin-resistant C. glabrata infections.


Subject(s)
Antifungal Agents/administration & dosage , Candida glabrata/drug effects , Candidiasis, Invasive/drug therapy , Glycosides/administration & dosage , Triterpenes/administration & dosage , Administration, Oral , Animals , Caspofungin/administration & dosage , Colony Count, Microbial , Disease Models, Animal , Injections, Intraperitoneal , Kidney/microbiology , Male , Mice, Inbred ICR , Placebos/administration & dosage , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...