Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11771, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37479726

ABSTRACT

Polyribonucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. In Escherichia coli, PNPase controls complex phenotypic traits like biofilm formation and growth at low temperature. In human cells, PNPase is located in mitochondria, where it is implicated in the RNA import from the cytoplasm, the mitochondrial RNA degradation and the processing of R-loops, namely stable RNA-DNA hybrids displacing a DNA strand. In this work, we show that the human PNPase (hPNPase) expressed in E. coli causes oxidative stress, SOS response activation and R-loops accumulation. Hundreds of E. coli RNAs are stabilized in presence of hPNPase, whereas only few transcripts are destabilized. Moreover, phenotypic traits typical of E. coli strains lacking PNPase are strengthened in presence of the human enzyme. We discuss the hypothesis that hPNPase expressed in E. coli may bind, but not degrade, the RNA, in agreement with previous in vitro data showing that phosphate concentrations in the range of those found in the bacterial cytoplasm and, more relevant, in the mitochondria, inhibit its activity.


Subject(s)
Escherichia coli , R-Loop Structures , Humans , Escherichia coli/genetics , Causality , Gene Expression Regulation , RNA/genetics
2.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163574

ABSTRACT

Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.


Subject(s)
Evolution, Molecular , Exoribonucleases , Mutation , RNA Stability , RNA-Binding Proteins , RNA , Exoribonucleases/genetics , Exoribonucleases/metabolism , Humans , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
3.
Eur Heart J Suppl ; 23(Suppl E): E1-E5, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34650349

ABSTRACT

The term Long COVID (or Post COVID) describes a condition characterized by persistence of symptoms for at least 12 weeks after the onset of COVID-19. It may last several months but the duration is still matter of observation. The symptoms and the clinical manifestations are clinically heterogeneous and suggesting involvement of multi-organs/systems, including the cardiovascular system. The general recurrent symptoms include fatigue, breathlessness, myalgia, headache, loss of memory, and impaired concentration. Patients report loss of their previous psychophysical performance. Cardiovascular involvement manifests with common symptoms such as palpitations and chest pain, and, less commonly, with events such as late arterial and venous thromboembolisms, heart failure episodes, strokes or transient ischaemic attack, 'myo-pericarditis'. The diagnostic criteria are mainly based on the narrative of the patients. Measurable biomarkers or instrumental findings or clinical events are not yet framed in a shared diagnostic framework. The open question for clinicians and researchers is whether biomarkers, electrocardiogram, non-invasive imaging, and clinical monitoring should be included in a shared diagnostic protocol aimed at defining the diagnostic path and protecting patients at risk of unexpected events.

4.
Microorganisms ; 8(6)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486329

ABSTRACT

LpxT is an inner membrane protein that transfers a phosphate group from the essential lipid undecaprenyl pyrophosphate (C-55PP) to the lipid A moiety of lipopolysaccharide, generating a lipid A tris-phosphorylated species. The protein is encoded by the non-essential lpxT gene, which is conserved in distantly related Gram-negative bacteria. In this work, we investigated the phenotypic effect of lpxT ectopic expression from a plasmid in Escherichia coli. We found that lpxT induction inhibited cell division and led to the formation of elongated cells, mostly with absent or altered septa. Moreover, the cells became sensitive to detergents and to hypo-osmotic shock, indicating that they had cell envelope defects. These effects were not due to lipid A hyperphosphorylation or C-55PP sequestering, but most likely to defective lipopolysaccharide transport. Indeed, lpxT overexpression in mutants lacking the L,D-transpeptidase LdtD and LdtE, which protect cells with outer membrane defects from osmotic lysis, caused cell envelope defects. Moreover, we found that pyrophosphorylated lipid A was also produced in a lpxT deletion mutant, indicating that LpxT is not the only protein able to perform such lipid A modification in E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL
...