Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Immunol ; 212(8): 1357-1365, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38416039

ABSTRACT

Macrophages and dendritic cells (DCs), although ontogenetically distinct, have overlapping functions and exhibit substantial cell-to-cell heterogeneity that can complicate their identification and obscure innate immune function. In this study, we report that M-CSF-differentiated murine bone marrow-derived macrophages (BMDMs) exhibit extreme heterogeneity in the production of IL-12, a key proinflammatory cytokine linking innate and adaptive immunity. A microwell secretion assay revealed that a small fraction of BMDMs stimulated with LPS secrete most IL-12p40, and we confirmed that this is due to extremely high expression of Il12b, the gene encoding IL-12p40, in a subset of cells. Using an Il12b-YFP reporter mouse, we isolated cells with high LPS-induced Il12b expression and found that this subset was enriched for genes associated with the DC lineage. Single-cell RNA sequencing data confirmed a DC-like subset that differentiates within BMDM cultures that is transcriptionally distinct but could not be isolated by surface marker expression. Although not readily apparent in the resting state, upon LPS stimulation, this subset exhibited a typical DC-associated activation program that is distinct from LPS-induced stochastic BMDM cell-to-cell heterogeneity. Overall, our findings underscore the difficulty in distinguishing macrophages and DCs even in widely used in vitro murine BMDM cultures and could affect the interpretation of some studies that use BMDMs to explore acute inflammatory responses.


Subject(s)
Interleukin-12 Subunit p40 , Macrophage Colony-Stimulating Factor , Animals , Mice , Macrophage Colony-Stimulating Factor/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Dendritic Cells , Single-Cell Analysis
2.
Trends Immunol ; 44(12): 965-970, 2023 12.
Article in English | MEDLINE | ID: mdl-37949786

ABSTRACT

A binary classification of macrophage activation as inflammatory or resolving does not capture the diversity of macrophage states observed in tissues. However, framing macrophage activation as a continuous spectrum of states overlooks the intracellular and extracellular networks that regulate and coordinate macrophage responses. Here, we suggest that the systems biology concept of network motifs, which incorporate rules of local molecular interactions, is useful for reframing macrophage activation. Because network motifs can be used to regulate distinct biological functions, they offer a simplified unit that can be compared across organismal, tissue, and disease contexts. Moreover, defining macrophage states as combinations of functional modules regulated by network motifs offers a framework to ultimately predict and target macrophage responses arising in complex environments.


Subject(s)
Macrophages , Phagocytosis , Humans , Systems Biology , Inflammation , Macrophage Activation
3.
Cancer Immunol Res ; 11(10): 1332-1350, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37478171

ABSTRACT

Checkpoint inhibitors have revolutionized cancer treatment, but resistance remains a significant clinical challenge. Myeloid cells within the tumor microenvironment can modulate checkpoint resistance by either supporting or suppressing adaptive immune responses. Using an anti-PD-1-resistant mouse melanoma model, we show that targeting the myeloid compartment via CD40 activation and CSF1R blockade in combination with anti-PD-1 results in complete tumor regression in a majority of mice. This triple therapy combination was primarily CD40 agonist-driven in the first 24 hours after therapy and showed a similar systemic cytokine profile in human patients as was seen in mice. Functional single-cell cytokine secretion profiling of dendritic cells (DC) using a novel microwell assay identified a CCL22+CCL5+ IL12-secreting DC subset as important early-stage effectors of triple therapy. CD4+ and CD8+ T cells are both critical effectors of treatment, and systems analysis of single-cell RNA sequencing data supported a role for DC-secreted IL12 in priming T-cell activation and recruitment. Finally, we showed that treatment with a novel IL12 mRNA therapeutic alone was sufficient to overcome PD-1 resistance and cause tumor regression. Overall, we conclude that combining myeloid-based innate immune activation and enhancement of adaptive immunity is a viable strategy to overcome anti-PD-1 resistance.


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Humans , Mice , Animals , Immunotherapy , CD40 Antigens , CD8-Positive T-Lymphocytes , Cytokines/therapeutic use , Disease Models, Animal , Interleukin-12/therapeutic use , Dendritic Cells , Tumor Microenvironment
4.
Cancers (Basel) ; 15(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37444440

ABSTRACT

Tumor-associated macrophages (TAMs) can be widely heterogeneous, based on their ontogeny and function, and driven by the tissue-specific niche. TAMs are highly abundant in the melanoma tumor microenvironment (TME), usually correlating with worse prognoses. However, the understanding of their diversity may be harnessed for therapeutic purposes. Here, we used the clinically relevant YUMM1.7 model to study melanoma TAM origin and dynamics during tumor progression. In i.d. YUMM1.7 tumors, we identified distinct TAM subsets based on F4/80 expression, with the F4/80high fraction increasing over time and displaying a tissue-resident-like phenotype. While skin-resident macrophages showed mixed ontogeny, F4/80+ TAM subsets in the melanoma TME originated almost exclusively from bone-marrow precursors. A multiparametric analysis of the macrophage phenotype showed a temporal divergence of the F4/80+ TAM subpopulations, which also differed from the skin-resident subsets and their monocytic precursors. Overall, the F4/80+ TAMs displayed co-expressions of M1- and M2-like canonical markers, while RNA sequencing showed differential immunosuppressive and metabolic profiles. Gene-set enrichment analysis (GSEA) revealed F4/80high TAMs to rely on oxidative phosphorylation, with increased proliferation and protein secretion, while F4/80low cells had high pro-inflammatory and intracellular signaling pathways, with lipid and polyamine metabolism. Overall, we provide an in-depth characterization of and compelling evidence for the BM-dependency of melanoma TAMs. Interestingly, the transcriptomic analysis of these BM-derived TAMs matched macrophage subsets with mixed ontogeny, which have been observed in other tumor models. Our findings may serve as a guide for identifying potential ways of targeting specific immunosuppressive TAMs in melanoma.

5.
bioRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333194

ABSTRACT

Melanomas display high numbers of tumor-associated macrophages (TAMs), which correlate with worse prognosis. Harnessing macrophages for therapeutic purposes has been particularly challenging due to their heterogeneity, based on their ontogeny and function and driven by the tissue-specific niche. In the present study, we used the YUMM1.7 model to better understand melanoma TAM origin and dynamics during tumor progression, with potential therapeutic implications. We identified distinct TAM subsets based on F4/80 expression, with the F4/80 high fraction increasing over time and displaying tissue-resident-like phenotype. While skin-resident macrophages showed mixed on-togeny, F4/80 + TAM subsets in i.d. YUMM1.7 tumors originated almost exclusively from bone-marrow precursors. Mul-tiparametric analysis of macrophage phenotype showed a temporal divergence of F4/80 + TAM subpopulations, which also differed from skin-resident subsets, and from their monocytic precursors. Overall, F4/80 + TAMs displayed co-ex-pression of M1- and M2-like canonical markers, while RNA-seq and pathway analysis showed differential immunosup-pressive and metabolic profiles. GSEA showed F4/80 high TAMs to rely on oxidative phosphorylation, with increased proliferation and protein secretion while F4/80 low cells had high pro-inflammatory and intracellular signaling pathways, with lipid and polyamine metabolism. Overall, the present in-depth characterization provides further evidence of the ontogeny of the evolving melanoma TAMs, whose gene expression profiles matched recently-identified TAM clusters in other tumor models and human cancers. These findings provide evidence for potentially targeting specific immunosup-pressive TAMs in advanced tumor stages.

6.
Acta Biomater ; 155: 167-181, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36371004

ABSTRACT

3D in vitro tumor models have recently been investigated as they can recapitulate key features in the tumor microenvironment. Reconstruction of a biomimetic scaffold is critical in these models. However, most current methods focus on modulating local properties, e.g. micro- and nano-scaled topographies, without capturing the global millimeter or intermediate mesoscale features. Here we introduced a method for modulating the collagen I-based extracellular matrix structure by disruption of fibrillogenesis and the gelation process through mechanical agitation. With this method, we generated collagen scaffolds that are thickened and wavy at a larger scale while featuring global softness. Thickened collagen patches were interconnected with loose collagen networks, highly resembling collagen architecture in the tumor stroma. This thickened collagen network promoted tumor cell dissemination. In addition, this novel modified scaffold triggered differences in morphology and migratory behaviors of tumor cells. Altogether, our method for altered collagen architecture paves new ways for studying in detail cell behavior in physiologically relevant biological processes. STATEMENT OF SIGNIFICANCE: Tumor progression usually involves chronic tissue damage and repair processes. Hallmarks of tumors are highly overlapped with those of wound healing. To mimic the tumor milieu, collagen-based scaffolds are widely used. These scaffolds focus on modulating microscale topographies and mechanics, lacking global architecture similarity compared with in vivo architecture. Here we introduced one type of thick collagen bundles that mimics ECM architecture in human skin scars. These thickened collagen bundles are long and wavy while featuring global softness. This collagen architecture imposes fewer steric restraints and promotes tumor cell dissemination. Our findings demonstrate a distinct picture of cell behaviors and intercellular interactions, highlighting the importance of collagen architecture and spatial heterogeneity of the tumor microenvironment.


Subject(s)
Collagen , Neoplasms , Humans , Collagen/chemistry , Cell Movement , Collagen Type I/chemistry , Extracellular Matrix/metabolism , Neoplasms/metabolism , Tissue Scaffolds/chemistry , Tumor Microenvironment
7.
Cancers (Basel) ; 13(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34572807

ABSTRACT

Tumor immune response is shaped by the tumor microenvironment (TME), which often evolves to be immunosuppressive, promoting disease progression and metastasis. An important example is melanoma tumors, which display high numbers of tumor-associated macrophages (TAMs) that are immunosuppressive but also have the potential to restore anti-tumor activity. However, to therapeutically target TAMs, there is a need to understand the early events that shape their tumor-promoting profile. To address this, we built and optimized 3D in vitro co-culture systems, composed of a collagen-I matrix scaffolding murine bone-marrow-derived macrophages (BMDMs), YUMM1.7 melanoma cells, and fibroblasts to recreate the early melanoma TME and study how interactions with fibroblasts and tumor cells modulate macrophage immune activity. We monitored BMDM behavior and interactions through time-lapse imaging and characterized their activation and secretion. We found that stromal cells induced a rapid functional activation, with increased motility and response from BMDMs. Over the course of seven days, BMDMs acquired a phenotype and secretion profile that resembled melanoma TAMs in established tumors. Overall, the direct cell-cell interactions with the stromal components in a 3D environment shape BMDM transition to a TAM-like immunosuppressive state. Our systems will enable future studies of changes in macrophage-stromal cross-talk in the melanoma TME.

8.
Sci Rep ; 11(1): 10731, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031449

ABSTRACT

Cutaneous squamous cell carcinomas (cSCC) are among the most commonly diagnosed malignancies, causing significant morbidity and mortality. Tumor-associated macrophage (TAM) expression of arginase is implicated in tumor progression, and therapeutic use of arginase inhibitors has been studied in various cancers. However, investigating potential cSCC immunotherapies including arginase inhibition in pre-clinical models is hampered by the lack of appropriate tumor models in immunocompetent mice. PDV is a cSCC cell line derived from chemical carcinogenesis of mouse keratinocytes. PDVC57 cells were derived from a PDV tumor in C57BL/6 (B6) mice. Unlike PDV, PDVC57 tumors grow consistently in B6 mice, and have increased TAMs, decreased dendritic and T cell intra-tumor infiltration. Arginase inhibition in cSCC tumors using Nω-hydroxy-nor-arginine (nor-NOHA) reduced tumor growth in B6 mice but not immunodeficient Rag1-deficient mice. nor-NOHA administration increased dendritic and T cell tumor-infiltration and PD-1 expression. The combination of nor-NOHA and anti-PD-1 therapy with nivolumab enhanced anti-PD-1 therapeutic efficacy. This study demonstrates the therapeutic potential of transcutaneous arginase inhibition in cSCC. A competent immune microenvironment is required for tumor growth inhibition using this arginase inhibitor. Synergistic co-inhibition of tumor growth in these results, supports further examination of transcutaneous arginase inhibition as a therapeutic modality for cSCC.


Subject(s)
Antineoplastic Agents/administration & dosage , Arginase/antagonists & inhibitors , Arginine/analogs & derivatives , Carcinoma, Squamous Cell/drug therapy , Skin Neoplasms/drug therapy , Administration, Cutaneous , Animals , Antineoplastic Agents/pharmacology , Arginine/administration & dosage , Arginine/pharmacology , Carcinoma, Squamous Cell/enzymology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Homeodomain Proteins/genetics , Humans , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Skin Neoplasms/immunology
9.
Cancer Immunol Immunother ; 64(11): 1393-406, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26197849

ABSTRACT

Dendritic cells (DCs) are professional APCs used for the development of cancer vaccines because of their ability to activate adaptive immune responses. Previously, we designed the DC/Apo-Nec vaccine using human DCs loaded with dying melanoma cells that primed Ag-specific cytotoxic T cells. Here, we evaluate the effect of a standard pro-inflammatory cytokine cocktail (CC) and adjuvants on DC/Apo-Nec maturation and migration. CC addition to the vaccine coculture allowed efficient Ag uptake while attaining strong vaccine maturation with an immunostimulatory profile. The use of CC not only increased CCR7 expression and the vaccine chemokine responsiveness but also upregulated matrix metalloproteinase-9 secretion, which regulated its invasive migration in vitro. Neither IL-6 nor prostaglandin E2 had a negative effect on vaccine preparation. In fact, all CC components were necessary for complete vaccine maturation. Subcutaneously injected DC/Apo-Nec vaccine migrated rapidly to draining LNs in nude mice, accumulating regionally after 48 h. The migrating cells of the CC-matured vaccine augmented in proportion and range of distribution, an effect that increased further with the topical administration of imiquimod cream. The migrating proportion of human DCs was detected in draining LNs for at least 9 days after injection. The addition of CC during DC/Apo-Nec preparation enhanced vaccine performance by improving maturation and response to LN signals and by conferring a motile and invasive vaccine phenotype both in vitro and in vivo. More importantly, the vaccine could be combined with different adjuvants. Therefore, this DC-based vaccine design shows great potential value for clinical translation.


Subject(s)
Cancer Vaccines/immunology , Cytokines/physiology , Dendritic Cells/immunology , Lymph Nodes/immunology , Melanoma/immunology , Aminoquinolines/pharmacology , Animals , Cell Movement , Chemotaxis , Humans , Imiquimod , Matrix Metalloproteinase 9/metabolism , Melanoma/pathology , Mice , Mice, Nude , Neoplasm Invasiveness , T-Lymphocytes/immunology
10.
Front Immunol ; 6: 91, 2015.
Article in English | MEDLINE | ID: mdl-25784913

ABSTRACT

Many approaches for cancer immunotherapy have targeted dendritic cells (DCs), directly or indirectly, for the induction of antitumor immune responses. DC-based vaccines have been developed using a wide variety of ex vivo DC culture conditions, antigen (Ag) source and loading strategies, maturation agents, and routes of vaccination. Adjuvants are used to activate innate immune cells at the vaccine injection site, to promote Ag transport to the draining lymph nodes (LNs) and to model adaptive immune responses. Despite years of effort, the effective induction of strong and durable antitumor T-cell responses in vaccinated patients remains a challenge. The study of vaccine interactions with other immune cells in the LNs and, more recently, in the injection site has opened new doors for understanding antitumor effector T-cell licensing and function. In this review, we will briefly discuss the relevant sites and up-to-date facts regarding possible targets for antitumor vaccine refinement. We will focus on the processes taking place at the injection site, adjuvant combinations and their role in DC-based vaccines, LN homing, and modeling vaccine-induced immune responses capable of controlling tumor growth and generating immune memory.

11.
Cancer Immunol Immunother ; 62(1): 3-15, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22722447

ABSTRACT

Gamma irradiation is one of the methods used to sterilize melanoma cells prior to coculturing them with monocyte-derived immature dendritic cells in order to develop antitumor vaccines. However, the changes taking place in tumor cells after irradiation and their interaction with dendritic cells have been scarcely analyzed. We demonstrate here for the first time that after irradiation a fraction of tumor cells present large lipid bodies, which mainly contain triglycerides that are several-fold increased as compared to viable cells as determined by staining with Oil Red O and BODIPY 493/503 and by biochemical analysis. Phosphatidyl-choline, phosphatidyl-ethanolamine and sphingomyelin are also increased in the lipid bodies of irradiated cells. Lipid bodies do not contain the melanoma-associated antigen MART-1. After coculturing immature dendritic cells with irradiated melanoma cells, tumor cells tend to form clumps to which dendritic cells adhere. Under such conditions, dendritic cells are unable to act as stimulating cells in a mixed leukocyte reaction. However, when a maturation cocktail composed of TNF-alpha, IL-6, IL-1beta and prostaglandin E2 is added to the coculture, the tumor cells clumps disaggregate, dendritic cells remain free in suspension and their ability to efficiently stimulate allogeneic lymphocytes is restored. These results help to understand the events following melanoma cell irradiation, shed light about interactions between irradiated cells and dendritic cells, and may help to develop optimized dendritic cell vaccines for cancer therapy.


Subject(s)
Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Cytokines/immunology , Dendritic Cells/immunology , Melanoma/chemistry , Melanoma/immunology , Blotting, Western , Cancer Vaccines/chemical synthesis , Cell Line, Tumor , Cell Survival/radiation effects , Coculture Techniques , Flow Cytometry , Gamma Rays , Humans , Lipids , Melanoma/pathology
12.
PLoS One ; 7(7): e40311, 2012.
Article in English | MEDLINE | ID: mdl-22768350

ABSTRACT

Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8(+) T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8(+) T cell clone. Confocal microscopy with Alexa Fluor®(647)-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8(+) T cell cross-presentation thereafter.


Subject(s)
Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Gamma Rays , MART-1 Antigen/immunology , Macrophages/immunology , Melanoma/immunology , Phagocytosis/immunology , Antigen Presentation/radiation effects , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Dendritic Cells/metabolism , Gene Expression Regulation, Neoplastic/immunology , Gene Expression Regulation, Neoplastic/radiation effects , HLA-A2 Antigen/immunology , HLA-A2 Antigen/metabolism , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , MART-1 Antigen/biosynthesis , Macrophages/metabolism , Melanoma/metabolism , Microscopy, Confocal , Phagocytosis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...