Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(26): 11112-11119, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38887085

ABSTRACT

Although uranium oxide hydrate (UOH) minerals and synthetic phases have been extensively studied, the role of ammonium ions in the formation of UOH materials is not well understood. In this work, the stabilization of a synthetic UOH phase with ammonium ions and the inclusion of ammonium nitrate were investigated using a range of structural and spectroscopic techniques. Compound (NH4)2(NO3)[(UO2)3O2(OH)3] (U-N1) crystallises in the orthorhombic Pmn21 space group, having a layered structure with typical α-U3O8 type layers and interlayer (NH4)+ cations as well as (NO3)- anions. The presence of uranyl, (NH4)+ cations and (NO3)- anions were further confirmed with a combination of FTIR and Raman spectroscopies through characteristic vibrational modes. The roles of the (NH4)+ cations for charge compensation and facilitating the inclusion of (NO3)- anions via hydrogen bonding were revealed and discussed. The findings have implications for uranium geochemistry, reprocessing of spent nuclear fuel and possible spent nuclear fuel alteration pathways under geological disposal.

2.
Materials (Basel) ; 15(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36233986

ABSTRACT

Through the combination of low-temperature hydrothermal synthesis and room-temperature evaporation, a synthetic phase similar in composition and crystal structure to the Earth's most complex mineral, ewingite, was obtained. The crystal structures of both natural and synthetic compounds are based on supertetrahedral uranyl-carbonate nanoclusters that are arranged according to the cubic body-centered lattice principle. The structure and composition of the uranyl carbonate nanocluster were refined using the data on synthetic material. Although the stability of natural ewingite is higher (according to visual observation and experimental studies), the synthetic phase can be regarded as a primary and/or metastable reaction product which further re-crystallizes into a more stable form under environmental conditions.

3.
J Appl Crystallogr ; 54(Pt 6): 1656-1663, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34963763

ABSTRACT

In this work, the structures of chemically related uranyl-oxide minerals agrinierite and rameauite have been revisited and some corrections to the available structure data are provided. Both structures were found to be twinned. The two minerals are chemically similar, and though their structures differ considerably, their unit-cell metrics are similar. Agrinierite was found to be twinned by metric merohedry (diffraction type I), whereas the structure of rameauite is twinned by reticular merohedry (diffraction type II). The twinning of the monoclinic unit cells (true cells) leads to pseudo-orthorhombic or pseudo-tetragonal supercells in the single-crystal diffraction patterns of both minerals. According to the new data and refinement, agrinierite is monoclinic (space group Cm), with a = 14.069 (3), b = 14.220 (3), c = 13.967 (3) Å, ß = 120.24 (12)° and V = 2414.2 (12) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.121, b = 14.276, c = 24.221 Šand V = 2 × 2441 Å3, which is F centered. The new structure refinement converged to R = 3.54% for 6545 unique observed reflections with I > 3σ(I) and GOF = 1.07. Rameauite is also monoclinic (space group Cc), with a = 13.947 (3), b = 14.300 (3), c = 13.888 (3) Å, ß = 118.50 (3)° and V = 2434.3 (11) Å3 (Z = 2). The twinning can be expressed as a mirror in (101) (apart from the inversion twin), which leads to a supercell with a = 14.223, b = 14.300, c = 23.921 Šand V = 2 × 2434 Å3, which is C centered. The new structure refinement of rameauite converged to R = 4.23% for 2344 unique observed reflections with I > 3σ(I) and GOF = 1.48. The current investigation documented how peculiar twinning can be, not only for this group of minerals, and how care must be taken in handling the data biased by twinning.

4.
Inorg Chem ; 60(20): 15169-15179, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34559506

ABSTRACT

Sedovite, U4+(Mo6+O4)2·nH2O, is reported as being one of the earliest supergene minerals formed of the secondary zone. The difficulty of isolating enough pure material limits studies to techniques that can access the nanoscale combined with theoretical analyses. The crystal structure of sedovite has been solved and refined using the dynamical approach from three-dimensional electron diffraction data collected on natural nanocrystals found among iriginite. At 100 K, sedovite is monoclinic a ≈ 6.96 Å, b ≈ 9.07 Å, c ≈ 12.27 Å, and V ≈ 775 Å3 with space group C2/c. The microporous structure presents a characteristic framework built from uranium polyhedra and disordered Mo pyramids creating pore hosting water molecules. To confirm the formula U4+(Mo6+O4)2·nH2O, the possible presence of a hydroxyl group that would promote Mo5+ was tested with density functional theory (DFT) computations at the ambient temperature. DFT predicts that sedovite is a ferromagnetic insulator with a fundamental bandgap of Eg ∼ 1.7 eV with its chemical and physical properties dominated by U4+ rather than Mo6+. The structural complexity, IG,tot, of sedovite was evaluated in order to get indirect information about the missing formation conditions.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 77(Pt 3): 378-383, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34096520

ABSTRACT

Revisiting the structure of uranyl arsenate mineral hügelite provided some corrections to the available structural data. The previous twinning model (by reticular merohedry) in hügelite has been corrected. Twinning of the monoclinic unit cell [a = 7.0189 (7) Å, b = 17.1374 (10) Å, c = 8.1310 (10) Šand ß = 108.904 (10)°], which can be expressed as a mirror in [100], leads to a pseudo-orthorhombic unit cell (a = 7.019 Å, b = 17.137 Å, c = 61.539 Šand ß = 90.02°), which is eight times larger, with respect to the unit-cell volume, than a real cell. Moreover, the unit cell of chosen here and the unit cell given by the previous structure description both lead to the same supercell. A new structure refinement undertaken on an untwinned crystal of hügelite resulted in R = 4.82% for 12 864 reflections with Iobs > 3σ(I) and GOF = 1.12. The hydrogen-bonding scheme has been proposed for hügelite for the first time.

6.
IUCrJ ; 8(Pt 1): 116-123, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33520247

ABSTRACT

Kaatialaite mineral Fe[AsO2(OH)2]5H2O from Jáchymov, Czech Republic forms white aggregates of needle-shaped crystals with micrometric size. Its structure at ambient temperature has already been reported but hydrogen atoms could not be identified from single-crystal X-ray diffraction. An analysis using 3D electron diffraction at low temperature brings to light the hydrogen positions and the existence of hydrogen disorder. At 100 K, kaatialaite is described in a monoclinic unit cell of a = 15.46, b = 19.996, c = 4.808 Å, ß = 91.64° and V = 1485.64 Å3 with space group P21/n. The hydrogen sites were revealed after refinements both considering the dynamical effects and ignoring them. The possibility to access most of the hydrogen positions, including partially occupied ones among heavy atoms, from the kinematical refinement is due to the recent developments in the analysis of 3D electron data. The hydrogen bonding observed in kaatialaite provides examples of H2O configurations that have not been observed before in the structures of oxysalts with the presence of unusual inverse transformer H2O groups.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 3): 502-509, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32831267

ABSTRACT

The crystal structure of phurcalite, Ca2[(UO2)3O2(PO4)2]·7H2O, orthorhombic, a = 17.3785 (9) Å, b = 15.9864 (8) Å, c = 13.5477 (10) Å, V = 3763.8 (4) Å3, space group Pbca, Z = 8 has been refined from single-crystal XRD data to R = 0.042 for 3182 unique [I > 3σ(I)] reflections and the hydrogen-bonding scheme has been refined by theoretical calculations based on the TORQUE method. The phurcalite structure is layered, with uranyl phosphate sheets of the phosphuranylite topology which are linked by extensive hydrogen bonds across the interlayer occupied by Ca2+ cations and H2O groups. In contrast to previous studies the approach here reveals five transformer H2O groups (compared to three expected by a previous study) and two non-transformer H2O groups. One of the transformer H2O groups is, nevertheless, not linked to any metal cation, which is a less frequent type of H2O bonding in solid state compounds and minerals. The structural formula of phurcalite has been therefore redefined as {Ca2(H2[3]O)5(H2[4]O)2}[(UO2)3O2(PO4)2], Z = 8.

8.
Sci Rep ; 10(1): 7510, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32371887

ABSTRACT

The full crystal structure of the phyllosilicate mineral tuperssuatsiaite, including the positions of the hydrogen atoms in its unit cell, is determined for the first time by using first-principles solid-state methods. From the optimized structure, its infrared spectrum and elastic properties are determined. The computed infrared spectrum is in excellent agreement with the experimental spectrum recorded from a natural sample from Ilímaussaq alkaline complex (Greenland, Denmark). The elastic behavior of tuperssuatsiaite is found to be extremely anomalous and significant negative compressibilities are found. Tuperssuatsiaite exhibits the important negative linear compressibility phenomenon under small anisotropic pressures applied in a wide range of orientations of the applied strain and the very infrequent negative area compressibility phenomenon under external isotropic pressures in the range from 1.9 to 2.4 GPa. The anisotropic negative linear compressibility effect in tuperssuatsiaite is related to the increase of the unit cell along the direction perpendicular to the layers charactering its crystal structure. The isotropic negative area compressibility effect, however, is related to the increase of the unit cell dimensions along the directions parallel to the layers.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118216, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32171155

ABSTRACT

Bayleyite is a highly hydrated uranyl tricarbonate mineral containing eighteen water molecules per formula unit. Due to this large water content, the correct description of its crystal structure is a great challenge for the first principles solid state methodology. In this work, the crystal structure, hydrogen bonding, mechanical properties and infrared spectrum of bayleyite, Mg2[UO2(CO3)3] · 18 H2O, have been investigated by means of Periodic Density Functional Theory methods using plane wave basis sets and pseudopotentials. The computed unit-cell parameters, interatomic distances, hydrogen bonding network geometry and the X-ray powder diffraction pattern of bayleyite reproduce successfully the experimental data, thus confirming the crystal structure determined from X-ray diffraction data. From the energy-optimized structure, the elastic properties and infrared spectrum have been determined using theoretical methods. The calculated elastic properties include the bulk modulus and its pressure derivatives, the Young and shear moduli, the Poisson ratio and the ductility, hardness and anisotropy indices. Bayleyite is shown to be a very isotropic ductile mineral possessing a bulk modulus of B ~28 GPa. The infrared spectrum of bayleyite is obtained experimentally from a natural mineral sample from the Jáchymov ore district, Czech Republic, and determined employing density functional perturbation theory. Since both spectra show a high degree of consistence, the bands in the observed spectrum are assigned using the theoretical methodology. The atomic vibrational motions localized in the uranyl tricarbonate units are described in detail, using appropriate normal coordinate analyses based on accurate vibrational computations, since the vibrational normal modes have not been hitherto studied for any uranyl tricarbonate mineral.

10.
RSC Adv ; 10(53): 31947-31960, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-35518170

ABSTRACT

The determination of the full crystal structure of the uranyl sulfate mineral uranopilite, (UO2)6(SO4)O2(OH)6·14H2O, including the positions of the hydrogen atoms within the corresponding unit cell, has not been feasible to date due to the poor quality of its X-ray diffraction pattern. In this paper, the complete crystal structure of uranopilite is established for the first time by means of first principles solid-state calculations based in density functional theory employing a large plane wave basis set and pseudopotential functions. The computed unit-cell parameters and structural data for the non-hydrogen atoms are in excellent agreement with the available experimental data. The computed X-ray diffraction pattern is also in satisfactory agreement with the experimental pattern. The infrared spectrum of uranopilite is collected from a natural crystal specimen originating in Jáchymov (Czech Republic) and computed employing density functional perturbation theory. The theoretical and experimental vibrational spectra are highly consistent. Therefore, a full assignment of the bands in the experimental infrared spectrum is performed using a normal mode analysis of the first principles vibrational results. One overtone and six combination bands are recognized in the infrared spectrum. The elasticity tensor and phonon spectra of uranopilite are computed from the optimized crystal structure and used to analyze its mechanical stability, to obtain a rich set of elastic properties and to derive its fundamental thermodynamic properties as a function of temperature. Uranopilite is shown to have a large mechanical anisotropy and to exhibit the negative Poisson's ratio and negative linear compressibility phenomena. The calculated specific heat and entropy at 298.15 K are 179.6 and 209.0 J K-1 mol-1, respectively. The computed fundamental thermodynamic functions of uranopilite are employed to obtain its thermodynamic functions of formation in terms of the elements and the thermodynamic properties of a set of chemical reactions relating uranopilite with a representative group of secondary phases of spent nuclear fuel. From the reaction thermodynamic data, the relative stability of uranopilite with respect to these secondary phases is evaluated as a function of temperature and under different hydrogen peroxide concentrations. From the results, it follows that uranopilite has a very large thermodynamic stability in the presence of hydrogen peroxide. The high stability of uranopilite under this condition justify its early crystallization in the paragenetic sequence of secondary phases occurring when uranium dioxide is exposed to sulfur-rich solutions.

11.
Dalton Trans ; 48(44): 16722-16736, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31670728

ABSTRACT

The crystal structure, elastic properties and the Raman spectrum of the layered calcium uranyl silicate pentahydrate mineral uranophane-ß, Ca(UO2)2Si2O6(OH)2·5H2O, are studied by means of first-principles solid-state methods and compared with the corresponding information for the α polymorph. The availability of the energy optimized full crystal structure of uranophane-ß, including the positions of the hydrogen atoms, made possible the computation of its elastic properties and the Raman spectrum by using the theoretical methodology. An extended set of relevant mechanical data is reported. Uranophane-ß is shown to be a weak and ductile mineral and, consequenty, is mechanically very different from the α polymorph which is a hard and brittle material. Uranophane-ß exhibits the important negative Poisson's ratio (NPR) and negative linear compressibility (NLC) phenomena. The experimental Raman spectrum of uranophane-ß obtained from a natural mineral sample from pegmatite Perus, São Paulo, Brazil, is compared with the spectrum determined theoretically. Since both spectra are in very good agreement, the theoretical methods are employed to assign the Raman spectrum. Three weak bands of the experimental spectrum of this mineral, located at the wavenumbers 2302, 2128 and 2042 cm-1, are identified as combination bands. The Raman spectrum of uranophane-ß is also compared with that of the α polymorph. While they are rather similar, a detailed analysis reveals a significant number of differences. Finally, the relative thermodynamic stability of the α and ß polymorphs is evaluated. The α polymorph is more stable than the ß polymorph at zero pressure and temperature by -12.0 kJ mol-1.

12.
RSC Adv ; 9(27): 15323-15334, 2019 May 14.
Article in English | MEDLINE | ID: mdl-35514839

ABSTRACT

The crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite, Pb(UO2)(SiO4)·H2O, are investigated by means of first-principles solid-state methods based on density functional theory using plane waves and pseudopotentials. The computed unit cell parameters, bond lengths and angles and X-ray powder pattern of kasolite are found to be in very good agreement with their experimental counterparts. The calculated hydrogen atom positions and associated hydrogen bond structure in the unit cell of kasolite confirmed the hydrogen bond scheme previously determined from X-ray diffraction data. The kasolite crystal structure is formed from uranyl silicate layers having the uranophane sheet anion-topology. The lead ions and water molecules are located in the interlayer space. Water molecules belong to the coordination structure of lead interlayer ions and reinforce the structure by hydrogen bonding between the uranyl silicate sheets. The hydrogen bonding in kasolite is strong and dual, that is, the water molecules are distributed in pairs, held together by two symmetrically related hydrogen bonds, one being directed from the first water molecule to the second one and the other from the second water molecule to the first one. As a result of the full structure determination of kasolite, the determination of its mechanical properties and Raman spectrum becomes possible using theoretical methods. The mechanical properties and mechanical stability of the structure of kasolite are studied using the finite deformation technique. The bulk modulus and its pressure derivatives, the Young and shear moduli, the Poisson ratio and the ductility, hardness and anisotropy indices are reported. Kasolite is a hard and brittle mineral possessing a large bulk modulus of the order of B ∼ 71 GPa. The structure is mechanically stable and very isotropic. The large mechanical isotropy of the structure is unexpected since layered structures are commonly very anisotropic and results from the strong dual hydrogen bonding among the uranyl silicate sheets. The experimental Raman spectrum of kasolite is recorded from a natural mineral sample from the Jánská vein, Príbram base metal ore district, Czech Republic, and determined by using density functional perturbation theory. The agreement is excellent and, therefore, the theoretical calculations are employed to assign the experimental spectrum. Besides, the theoretical results are used to guide the resolution into single components of the bands from the experimental spectrum. A large number of kasolite Raman bands are reassigned. Three bands of the experimental spectrum located at the wavenumbers 1015, 977 and 813 cm-1, are identified as combination bands.

13.
RSC Adv ; 9(34): 19657-19661, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-35519355

ABSTRACT

The crystal structure of the U(iv)-phosphate mineral vyacheslavite has been solved from precession electron diffraction tomography (PEDT) data from the natural nano-crystal and further refined using density-functional theory (DFT) calculations. Vyacheslavite is orthorhombic, with the space group Cmca, with a ≈ 6.96 Å, b ≈ 9.07 Å and c ≈ 12.27 Å, V ≈ 775 Å3 (obtained from PEDT data at 100 K), Z = 8. Its structure is a complex heteropolyhedral framework consisting of sheets of UO7(OH) and PO4 polyhedra, running parallel to (001), interconnected by additional PO4 polyhedra. There is an (OH) group associated with the U(iv) polyhedron. The question of H2O presence within the small cavities of the framework has been addressed by the DFT calculations, which have proved that vyacheslavite does not contain any significant amount of H2O at room temperature.

14.
RSC Adv ; 9(18): 10058-10063, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-35520917

ABSTRACT

The crystal structure of lead uranyl-oxide hydroxy-hydrate mineral curite, ideally Pb3(H2O)2[(UO2)4O4(OH)3]2, was studied by means of single-crystal X-ray diffraction and theoretical calculations in order to localize positions of hydrogen atoms in the structure. This study has demonstrated that hydrogen atoms can be localized successfully also in materials for which the conventional approach of structure analysis failed, here due to very high absorption of X-rays by the mineral matrix. The theoretical calculations, based on the Torque method, provide a robust, fast real-space method for determining H2O orientations from their rotational equilibrium condition. In line with previous results we found that curite is orthorhombic, with space group Pnma, unit-cell parameters a = 12.5510(10), b = 8.3760(4), c = 13.0107(9) Å, V = 1367.78(16) Å3, and two formula units per unit cell. The structure (R 1 = 3.58% for 1374 reflections with I > 3σI) contains uranyl-hydroxo-oxide sheets of the unique topology among uranyl oxide minerals and compounds and an interlayer space with Pb2+ cations and a single H2O molecule, which is coordinated to the Pb-site. Current results show that curite is slightly non-stoichiometric in Pb content (∼3.02 Pb per unit cell, Z = 2); the charge-balance mechanism is via (OH) ↔ O2 substitution within the sheets of uranyl polyhedra. Disproving earlier predictions, the current study shows that curite contains only one H2O group, with [4]-coordinated oxygen. The hydrogen bonding network maintains the bonding between the sheets in addition to Pb-O bonds; among them, a H-bond is crucial between the OH group on an apical OUranyl atom of an adjacent sheet that stabilizes the entire structure. The results show that the combination of experimental X-ray data and the Torque method can successfully reveal hydrogen bonding especially for complex crystal structures and materials where X-rays fail to provide unambiguous hydrogen positions.

15.
RSC Adv ; 9(69): 40708-40726, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-35542667

ABSTRACT

The full crystal structure of the copper-uranyl tetrahydroxide mineral (vandenbrandeite), including the positions of the hydrogen atoms, is established by the first time from X-ray diffraction data taken from a natural crystal sample from the Musonoi Mine, Katanga Province, Democratic Republic of Congo. The structure is verified using first-principles solid-state methods. From the optimized structure, the mechanical and dynamical stability of vandenbrandeite is studied and a rich set of mechanical properties are determined. The Raman spectrum is recorded from the natural sample and determined theoretically. Since both spectra have a high-degree of consistence, all spectral bands are rigorously assigned using a theoretical normal-coordinate analysis. Two bands in the Raman spectra, located at 2327 and 1604 cm-1, are recognized as overtones and a band at 1554 cm-1 is identified as a combination band. The fundamental thermodynamic functions of vandenbrandeite are computed as a function of temperature using phonon calculations. These properties, unknown so far, are key-parameters for the performance-assessment of geological repositories for storage of radioactive nuclear waste and for understanding the paragenetic sequence of minerals arising from the corrosion of uranium deposits. The thermodynamic functions are used here to determine the thermodynamic properties of formation of vandenbrandeite in terms of the elements and the Gibbs free-energies and reaction constants for a series of reactions involving vandenbrandeite and a representative subset of the most important secondary phases of spent nuclear fuel. Finally, from the thermodynamic data of these reactions, the relative stability of vandenbrandeite with respect to these phases as a function of temperature and in the presence of hydrogen peroxide is evaluated. Vandenbrandeite is shown to be highly stable under the simultaneous presence of water and hydrogen peroxide.

16.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 1): 39-48, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-32830776

ABSTRACT

Uranyl sulfates, including those occurring in Nature (∼40 known members), possess particularly interesting structures. They exhibit a great dimensional and topological diversity of structures: from those based upon clusters of polyhedra to layered structures. There is also a great variability in the type of linkages between U and S polyhedra. From the point of view of complexity of those structures (measured as the amount of Shannon information per unit cell), most of the natural uranyl sulfates are intermediate (300-500 bits per cell) to complex (500-1000 bits per cell) with some exceptions, which can be considered as very complex structures (>1000 bits per cell). These exceptions are minerals alwilkinsite-(Y) (1685.95 bits per cell), sejkoraite-(Y) (1859.72 bits per cell), and natrozippeite (2528.63 bits per cell). The complexity of these structures is due to an extensive hydrogen bonding network which is crucial for the stability of these mineral structures. The hydrogen bonds help to propagate the charge from the highly charged interlayer cations (such as Y3+) or to link a high number of interlayer sites (i.e. five independent Na sites in the monoclinic natrozippeite) occupied by monovalent cations (Na+). The concept of informational ladder diagrams was applied to the structures of uranyl sulfates in order to quantify the particular contributions to the overall informational complexity and identifying the most contributing sources (topology, real symmetry, interlayer bonding).

17.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 4): 362-369, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30141421

ABSTRACT

Nollmotzite (IMA2017-100), Mg[UV(UVIO2)2F3O4](H2O)4, is a new uranium oxide fluoride mineral found in the Clara mine, Black Forest Mountains, Germany. Electron microprobe analysis provided the empirical formula (Mg1.06Cu0.02)Σ1.08[UV(UVIO2)2O3.85F3.15][(H2O)3.69(OH)0.31]Σ4.00 based on three U and 15 O + F atoms per formula unit. Nollmotzite is monoclinic, space group Cm, with a = 7.1015 (12) Å, b = 11.7489 (17) Å, c = 8.1954 (14) Å, ß = 98.087 (14)°, V = 676.98 (19) Å3 and Z = 2. The crystal structure [twinned by reticular merohedry; refined to R = 0.0369 with GoF = 1.09 for 1527 unique observed reflections, I > 3σ(I)] is based upon [UV(UVIO2)2F3O4]2- sheets of ß-U3O8 topology and contains an interlayer with MgF2(H2O)4 octahedra. Adjacent sheets are linked through F-Mg-F bonds, as well as via hydrogen bonds. The presence of fluorine and pentavalent uranium in the structure of nollmotzite has potentially important implications for the safe disposal of nuclear waste.

18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 5): 856-862, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28980989

ABSTRACT

Parabutlerite, orthorhombic FeIIISO4(OH)·2H2O, has been reinvestigated using single-crystal X-ray diffraction. The structure of parabutlerite is commensurately modulated, with a = 20.0789 (8), b = 7.4024 (7), c = 7.2294 (15) Šand q = 0.4b*. The superstructure has been determined, using a superspace approach, as having the superspace group Pnma(0ß0)s0s and t0 = 1/20, and refined to R = 0.0295 for 2392 main reflections with I > 3σ(I). The structure consists of infinite chains of Fe octahedra that are linked via vertices (OH groups); these chains are encased from both sides by SO4 tetrahedra. The displacive modulation of atoms in parabutlerite is connected with a tilt of the chains around the b axis towards the adjacent chains due to the accommodation of an energetically more favorable hydrogen-bond geometry.

19.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 3): 369-376, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28572547

ABSTRACT

The structure of meneghinite (CuPb13Sb7S24), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0ß0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Å, modulation vector q = 0.5433 (4)b*. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three- to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb3+ + [] → Pb2+ + Cu+, thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (∼0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.

20.
Environ Sci Technol ; 48(23): 13685-93, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25365451

ABSTRACT

Extremely arsenic-rich acid mine waters have developed by weathering of native arsenic in a sulfide-poor environment on the 10th level of the Svornost mine in Jáchymov (Czech Republic). Arsenic rapidly oxidizes to arsenolite (As2O3), and there are droplets of liquid on the arsenolite crust with high As concentration (80,000-130,000 mg·L(-1)), pH close to 0, and density of 1.65 g·cm(-1). According to the X-ray absorption spectroscopy on the frozen droplets, most of the arsenic is As(III) and iron is fully oxidized to Fe(III). The EXAFS spectra on the As K edge can be interpreted in terms of arsenic polymerization in the aqueous solution. The secondary mineral that precipitates in the droplets is kaatialaite [Fe(3+)(H2AsO4)3·5H2O]. Other unusual minerals associated with the arsenic lens are behounekite [U(4+)(SO4)2·4H2O], stepite [U(4+)(AsO3OH)2·4H2O], vysokýite [U(4+)[AsO2(OH)2]4·4H2O], and an unnamed phase (H3O)(+)2(UO2)2(AsO4)2·nH2O. The extremely low cell densities and low microbial biomass have led to insufficient amounts of DNA for downstream polymerase chain reaction amplification and clone library construction. We were able to isolate microorganisms on oligotrophic media with pH ∼ 1.5 supplemented with up to 30 mM As(III). These microorganisms were adapted to highly oligotrophic conditions which disabled long-term culturing under laboratory conditions. The extreme conditions make this environment unfavorable for intensive microbial colonization, but our first results show that certain microorganisms can adapt even to these harsh conditions.


Subject(s)
Arsenic/analysis , Mining , Water Pollutants, Chemical/analysis , Water/chemistry , Arsenic Trioxide , Arsenicals/chemistry , Czech Republic , Environment , Ferric Compounds/analysis , Geology , Groundwater/chemistry , Groundwater/microbiology , Iron/chemistry , Iron/metabolism , Minerals/analysis , Minerals/chemistry , Oxidation-Reduction , Oxides/chemistry , Water Pollutants, Chemical/chemistry , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...