Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Perspect ; 113(10): 1277-84, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16203234

ABSTRACT

Polychlorinated biphenyls (PCBs) are thought to cause numerous adverse health effects, but their impact on estrogen signaling is still not fully understood. In the present study, we used the ER-CALUX bioassay to determine estrogenic/antiestrogenic activities of the prevalent PCB congeners and PCB mixtures isolated from human male serum. The samples were collected from residents of an area with an extensive environmental contamination from a former PCB production site as well as from a neighboring background region in eastern Slovakia. We found that the lower-chlorinated PCBs were estrogenic, whereas the prevalent higher-chlorinated PCB congeners 138, 153, 170, 180, 187, 194, 199, and 203, as well as major PCB metabolites, behaved as antiestrogens. Coplanar PCBs had no direct effect on estrogen receptor (ER) activation in this in vitro model. In human male serum samples, high levels of PCBs were associated with a decreased ER-mediated activity and an increased dioxin-like activity, as determined by the DR-CALUX assay. 17beta-Estradiol (E2) was responsible for a major part of estrogenic activity identified in total serum extracts. Significant negative correlations were found between dioxin-like activity, as well as mRNA levels of cytochromes P450 1A1 and 1B1 in lymphocytes, and total estrogenic activity. For sample fractions containing only persistent organic pollutants (POPs), the increased frequency of antiestrogenic samples was associated with a higher sum of PCBs. This suggests that the prevalent non-dioxin-like PCBs were responsible for the weak antiestrogenic activity of some POPs fractions. Our data also suggest that it might be important to pay attention to direct effects of PCBs on steroid hormone levels in heavily exposed subjects.


Subject(s)
Environmental Pollutants/toxicity , Estradiol/blood , Polychlorinated Biphenyls/toxicity , Environmental Pollutants/analysis , Gas Chromatography-Mass Spectrometry , Humans , Male , Polychlorinated Biphenyls/analysis , Receptors, Aryl Hydrocarbon/agonists , Slovakia
2.
Toxicology ; 215(1-2): 80-9, 2005 Nov 05.
Article in English | MEDLINE | ID: mdl-16076518

ABSTRACT

Silymarin, a standardized mixture of flavonolignans, or its major constituents could be effective for prevention and treatment of hepatic damage or skin cancer. However, their potential side effects, such as modulation of endocrine functions via the disruption of estrogen receptor (ER) and/or aryl hydrocarbon receptor (AhR) activation, are largely unknown. In the present study, we investigated impact of silymarin, its constituents and a series of their synthetic derivatives on ER- and AhR-mediated activities using in vitro reporter gene assays. We found that none of the compounds under study affected the AhR-mediated activity in rat hepatoma cells. Contrary to that, several compounds behaved as either partial or full ER agonists. Silymarin elicited partial ER activation, with silybin B being probably responsible for a majority of the weak ER-mediated activity of silymarin; silybin A and other flavonolignans were found to be inactive and potent ER agonist taxifolin is only a minor constituent of silymarin. To our knowledge, this is probably the first time, when receptor-specific in vitro effects of separated diastereomers have been demonstrated. In contrast to silymarin constituents, the synthetic silybin derivatives, potentially useful as chemoprotective agents, did not modulate the ER-mediated activity, with exception of 23-O-pivaloylsilybin. Interestingly, 7-O-benzylsilybin potentiated ER-mediated activity of 17beta-estradiol despite possessing no estrogenic activity. In conclusion, our data suggest that estrogenicity of some silymarin constituents should be taken in account as their potential side effect when considered as chemopreventive compounds. These results also stress the need to study biological activities of purified or synthesized diastereomers of silybin derivatives.


Subject(s)
Receptors, Aryl Hydrocarbon/metabolism , Receptors, Estrogen/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Luciferases/biosynthesis , Luciferases/genetics , Molecular Structure , Rats , Silybin , Silymarin/chemistry , Silymarin/pharmacology , Stereoisomerism
3.
Toxicol Sci ; 83(2): 246-56, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15548639

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (BaP), are carcinogens suggested to be involved in development of human cancer. Several recent studies have reported that PAHs can activate estrogen receptors (ER), either directly or indirectly by producing estrogenic metabolites. We hypothesized that the activation of ER by PAHs or their metabolites could induce cell proliferation in estrogen-sensitive cells. In the present study, we found that two PAHs, benz[a]anthracene (BaA) and BaP, can stimulate proliferation of human breast carcinoma MCF-7 cells at concentrations 100 nM and higher. This effect was ER-dependent, because it was blocked by the pure antiestrogen ICI 182,780. Although both PAHs partially inhibited S-phase entry and DNA synthesis induced by 17beta-estradiol, they stimulated S-phase entry when applied to MCF-7 cells synchronized by serum deprivation. This was in contrast with model antiestrogenic aryl hydrocarbon receptor ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, which fully suppressed S-phase entry. BaP, which is a strong mutagen, was found to induce p53 tumor suppressor expression, a partial S-phase arrest and at higher concentrations also cell death. Pifithrin-alpha, a synthetic inhibitor of p53 activity, abolished both S-phase arrest and apoptosis induced by genotoxic PAHs, and it potentiated the proliferative effect of BaP. Thus, both genotoxic and nongenotoxic events seem to interact in the effects of BaP on cell proliferation. Taken together, our data indicate that both BaA and BaP can stimulate cell proliferation through activation of ER. The proliferative effects of these carcinogenic compounds might contribute to tumor promotion in estrogen-sensitive tissues.


Subject(s)
Benz(a)Anthracenes/toxicity , Benzo(a)pyrene/toxicity , Breast Neoplasms/genetics , Carcinogens/toxicity , Carcinoma/genetics , Cell Proliferation/drug effects , Estradiol/analogs & derivatives , Toluene/analogs & derivatives , Benzothiazoles , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Bromodeoxyuridine/metabolism , Carcinoma/drug therapy , Carcinoma/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Replication/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Epigenesis, Genetic , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Female , Fulvestrant , Humans , Receptors, Estrogen , Thiazoles/pharmacology , Toluene/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
Environ Toxicol Chem ; 23(9): 2214-20, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15378999

ABSTRACT

A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.


Subject(s)
Carcinogens, Environmental/pharmacology , Estrogens/pharmacology , Furans/pharmacology , Naphthalenes/pharmacology , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Estrogen/drug effects , Animals , Cell Count , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Structure , Rats , S Phase/drug effects
5.
Chem Res Toxicol ; 17(3): 340-7, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15025504

ABSTRACT

In the present study, a series of 32 hydroxy- and dihydroxy-polychlorinated biphenyls (OH-PCBs) and PCB-derived quinones were prepared and evaluated for their in vitro potencies to downregulate gap junctional intercellular communication (GJIC) and to activate the aryl hydrocarbon receptor (AhR) and the estrogen receptor alpha (ER) in well-established liver and mammary cell models. The rat liver epithelial cell line WB-F344 was used for in vitro determination of GJIC inhibition; the AhR-inducing activity was determined in the rat hepatoma H4IIE.Luc cells stably transfected with a luciferase reporter gene; ER-mediated activity was measured in two breast carcinoma cell lines, MVLN and T47D.Luc, stably transfected with luciferase under the control of estrogen responsive element. Acute inhibition of GJIC, potentially associated with tumor promotion, was detected after treatment with all OH-PCBs under study, with the persistent OH-PCBs being the strongest ones. Several compounds were found to significantly induce the AhR-mediated activity, including 4'-OH-PCB 79, a metabolite of PCB 77, and 2-(4'-chloro)- and 2-(3',4'-dichloro)-1,4-benzoquinones and 1,4-hydroquinones. Low molecular weight OH-PCBs, such as 3'-hydroxy, 4'-, and 3',4'-dihydroxy-4-chlorobiphenyl, elicited significant estrogenic activity and potentiated effect of 17beta-estradiol. Antiestrogenic potencies, determined in the presence of 17beta-estradiol, were found for persistent 4-OH-PCB 187, 4-OH-PCB 146, and some low chlorinated PCB derivatives. However, no apparent association between induction of AhR activity and antiestrogenicity was observed. The majority of the OH-PCBs suppressed the 17beta-estradiol response only at cytotoxic concentrations. Spearman's rank correlations were calculated for these biological data and the physicochemical descriptors, hydrophobicity (log P), molar volume, pKa, log D, and dihedral angle. Significant correlations were found between potency to downregulate GJIC and log P and molar volume (R = -0.7, p < 0.0001). Antiestrogenic effects were also negatively correlated with hydrophobicity and molar volume. No significant correlations among other biological end points and the physicochemical descriptors were observed for the entire set of compounds. These results show that oxygenated PCB metabolites are capable of multiple adverse effects, including gap junction inhibition, AhR-mediated activity, and (anti)estrogenicity. The inhibition of GJIC by OH-PCBs represents a novel mode of action of both the lower chlorinated and the persisting high molecular weight OH-PCBs.


Subject(s)
Environmental Pollutants/toxicity , Gap Junctions/drug effects , Neoplasms/metabolism , Polychlorinated Biphenyls/toxicity , Quinones/toxicity , Receptors, Aryl Hydrocarbon/biosynthesis , Receptors, Estrogen/biosynthesis , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Down-Regulation , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gap Junctions/metabolism , Humans , Hydroquinones , Hydroxylation , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplasms/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...