Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 11: 1352152, 2024.
Article in English | MEDLINE | ID: mdl-38651054

ABSTRACT

During robot-assisted therapy, a robot typically needs to be partially or fully controlled by therapists, for instance using a Wizard-of-Oz protocol; this makes therapeutic sessions tedious to conduct, as therapists cannot fully focus on the interaction with the person under therapy. In this work, we develop a learning-based behaviour model that can be used to increase the autonomy of a robot's decision-making process. We investigate reinforcement learning as a model training technique and compare different reward functions that consider a user's engagement and activity performance. We also analyse various strategies that aim to make the learning process more tractable, namely i) behaviour model training with a learned user model, ii) policy transfer between user groups, and iii) policy learning from expert feedback. We demonstrate that policy transfer can significantly speed up the policy learning process, although the reward function has an important effect on the actions that a robot can choose. Although the main focus of this paper is the personalisation pipeline itself, we further evaluate the learned behaviour models in a small-scale real-world feasibility study in which six users participated in a sequence learning game with an assistive robot. The results of this study seem to suggest that learning from guidance may result in the most adequate policies in terms of increasing the engagement and game performance of users, but a large-scale user study is needed to verify the validity of that observation.

2.
Bioinformatics ; 38(6): 1648-1656, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34986221

ABSTRACT

MOTIVATION: The majority of biomedical knowledge is stored in structured databases or as unstructured text in scientific publications. This vast amount of information has led to numerous machine learning-based biological applications using either text through natural language processing (NLP) or structured data through knowledge graph embedding models. However, representations based on a single modality are inherently limited. RESULTS: To generate better representations of biological knowledge, we propose STonKGs, a Sophisticated Transformer trained on biomedical text and Knowledge Graphs (KGs). This multimodal Transformer uses combined input sequences of structured information from KGs and unstructured text data from biomedical literature to learn joint representations in a shared embedding space. First, we pre-trained STonKGs on a knowledge base assembled by the Integrated Network and Dynamical Reasoning Assembler consisting of millions of text-triple pairs extracted from biomedical literature by multiple NLP systems. Then, we benchmarked STonKGs against three baseline models trained on either one of the modalities (i.e. text or KG) across eight different classification tasks, each corresponding to a different biological application. Our results demonstrate that STonKGs outperforms both baselines, especially on the more challenging tasks with respect to the number of classes, improving upon the F1-score of the best baseline by up to 0.084 (i.e. from 0.881 to 0.965). Finally, our pre-trained model as well as the model architecture can be adapted to various other transfer learning applications. AVAILABILITY AND IMPLEMENTATION: We make the source code and the Python package of STonKGs available at GitHub (https://github.com/stonkgs/stonkgs) and PyPI (https://pypi.org/project/stonkgs/). The pre-trained STonKGs models and the task-specific classification models are respectively available at https://huggingface.co/stonkgs/stonkgs-150k and https://zenodo.org/communities/stonkgs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Pattern Recognition, Automated , Software , Machine Learning , Natural Language Processing , Publications
3.
J Neurosci Methods ; 327: 108403, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31449825

ABSTRACT

BACKGROUND: Virtual reality combined with a spherical treadmill is used across species for studying neural circuits underlying navigation and learning. NEW METHOD: We developed an optical flow-based method for tracking treadmill ball motion in real time using a single high-resolution camera. RESULTS: Tracking accuracy and timing were determined using calibration data. Ball tracking was performed at 500 Hz and integrated with an open source game engine for virtual reality projection. The projection was updated at 120 Hz with a latency with respect to ball motion of 30 ±â€¯8 ms. The system was tested for behavior with fruit flies. The application and source code are available at https://github.com/ivan-vishniakou/neural-circuits-vr. COMPARISON WITH EXISTING METHOD(S): Optical flow-based tracking of treadmill motion is typically achieved using optical mice. The camera-based optical flow tracking system developed here is based on off-the-shelf components and offers control over the image acquisition and processing parameters. This results in flexibility with respect to tracking conditions - such as ball surface texture, lighting conditions, or ball size - as well as camera alignment and calibration. CONCLUSIONS: A fast system for rotational ball motion tracking suitable for virtual reality behavior with fruit flies was developed and characterized.


Subject(s)
Algorithms , Software , Spatial Navigation/physiology , User-Computer Interface , Virtual Reality , Animals , Drosophila melanogaster
SELECTION OF CITATIONS
SEARCH DETAIL
...