Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 30(Pt 2): 457-467, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36891860

ABSTRACT

The Small Quantum Systems instrument is one of the six operating instruments of the European XFEL, dedicated to the atomic, molecular and cluster physics communities. The instrument started its user operation at the end of 2018 after a commissioning phase. The design and characterization of the beam transport system are described here. The X-ray optical components of the beamline are detailed, and the beamline performances, transmission and focusing capabilities are reported. It is shown that the X-ray beam can be effectively focused as predicted by ray-tracing simulations. The impact of non-ideal X-ray source conditions on the focusing performances is discussed.

2.
J Synchrotron Radiat ; 30(Pt 2): 479-489, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36891862

ABSTRACT

A split-and-delay unit for the extreme ultraviolet and soft X-ray spectral regions has been built which enables time-resolved experiments at beamlines FL23 and FL24 at the Free-electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X-ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 < T < 0.84 for hν < 100 eV and T > 0.50 for 100 eV < hν < 650 eV with the Ni coating, and T > 0.06 for hν < 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T > 0.61 with the Ni coating and T > 0.23 with a Pt coating is achieved. Soft X-ray pump/soft X-ray probe experiments are possible within a delay range of -5 ps < Δt < +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split-and-delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free-electron laser.

3.
Sci Rep ; 12(1): 14430, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36002577

ABSTRACT

In this work, single-shot ptychography was adapted to the XUV range and, as a proof of concept, performed at the free-electron laser FLASH at DESY to obtain a high-resolution reconstruction of a test sample. Ptychography is a coherent diffraction imaging technique capable of imaging extended samples with diffraction-limited resolution. However, its scanning nature makes ptychography time-consuming and also prevents its application for mapping of dynamical processes. Single-shot ptychography can be realized by collecting the diffraction patterns of multiple overlapping beams in one shot and, in recent years, several concepts based on two con-focal lenses were employed in the visible regime. Unfortunately, this approach cannot be extended straightforwardly to X-ray wavelengths due to the use of refractive optics. Here, a novel single-shot ptychography setup utilizes a combination of X-ray focusing optics with a two-dimensional beam-splitting diffraction grating. It facilitates single-shot imaging of extended samples at X-ray wavelengths.

4.
Polymers (Basel) ; 14(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35808574

ABSTRACT

Polyethylene terephthalate (PET) is a thermoplastic polyester with numerous applications in industry. However, it requires surface modification on an industrial scale for printing and coating processes and plasma treatment is one of the most commonly used techniques to increase the hydrophilicity of the PET films. Systematic improvement of the surface modification by adaption of the plasma process can be aided by a comprehensive understanding of the surface morphology and chemistry. However, imaging large surface areas (tens of microns) with a resolution that allows understanding the surface quality and modification is challenging. As a proof-of-principle, plasma-treated PET films were used to demonstrate the capabilities of X-ray ptychography, currently under development at the soft X-ray free-electron laser FLASH at DESY, for imaging macroscopic samples. In combination with scanning electron microscopy (SEM), this new technique was used to study the effects of different plasma treatment processes on PET plastic films. The studies on the surface morphology were complemented by investigations of the surface chemistry using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). While both imaging techniques consistently showed an increase in roughness and change in morphology of the PET films after plasma treatment, X-ray ptychography can provide additional information on the three-dimensional morphology of the surface. At the same time, the chemical analysis shows an increase in the oxygen content and polarity of the surface without significant damage to the polymer, which is important for printing and coating processes.

5.
Opt Express ; 29(14): 22345-22365, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34266001

ABSTRACT

Ptychography, a scanning coherent diffraction imaging method, can produce a high-resolution reconstruction of a sample and, at the same time, of the illuminating beam. The emergence of vacuum ultraviolet and X-ray free electron lasers (FELs) has brought sources with unprecedented characteristics that enable X-ray ptychography with highly intense and ultra-fast short-wavelength pulses. However, the shot-to-shot pulse fluctuations typical for FEL pulses and particularly the partial spatial coherence of self-amplified spontaneous emission (SASE) FELs lead to numerical complexities in the ptychographic algorithms and ultimately restrict the application of ptychography at FELs. We present a general adaptive forward model for ptychography based on automatic differentiation, which is able to perform reconstructions even under these conditions. We applied this model to the first ptychography experiment at FLASH, the Free electron LASer in Hamburg, and obtained a high-resolution reconstruction of the sample as well as the complex wavefronts of individual FLASH pulses together with their coherence properties. This is not possible with more common ptychography algorithms.

6.
Sensors (Basel) ; 20(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182797

ABSTRACT

Wavefront analysis is a fast and reliable technique for the alignment and characterization of optics in the visible, but also in the extreme ultraviolet (EUV) and X-ray regions. However, the technique poses a number of challenges when used for optical systems with numerical apertures (NA) > 0.1. A high-numerical-aperture Hartmann wavefront sensor was employed at the free electron laser FLASH for the characterization of a Schwarzschild objective. These are widely used in EUV to achieve very small foci, particularly for photolithography. For this purpose, Schwarzschild objectives require highly precise alignment. The phase measurements acquired with the wavefront sensor were analyzed employing two different methods, namely, the classical calculation of centroid positions and Fourier demodulation. Results from both approaches agree in terms of wavefront maps with negligible degree of discrepancy.

7.
Opt Express ; 28(18): 25664-25681, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906853

ABSTRACT

Proper diagnostics of intense free-electron laser (FEL) X-ray pulses is indisputably important for experimental data analysis as well as for the protection of beamline optical elements. New challenges for beam diagnostic methods are introduced by modern FEL facilities capable of delivering powerful pulses at megahertz (MHz) repetition rates. In this paper, we report the first characterization of a defocused MHz 13.5-nm beam generated by the free-electron laser in Hamburg (FLASH) using the method of multi-pulse desorption imprints in poly(methyl methacrylate)(PMMA). The beam fluence profile is reconstructed in a novel and highly accurate way that takes into account the nonlinear response of material removal to total dose delivered by multiple pulses. The algorithm is applied to experimental data of single-shot ablation imprints and multi-shot desorption imprints at both low (10 Hz) and high (1 MHz) repetition rates. Reconstructed response functions show a great agreement with the theoretical desorption response function model.

8.
Appl Opt ; 59(5): 1363-1370, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32225398

ABSTRACT

With high-harmonic generation (HHG), spatially and temporally coherent XUV to soft x-ray (100 nm to 10 nm) table-top sources can be realized by focusing a driving infrared (IR) laser on a gas target. For applications such as coherent diffraction imaging, holography, plasma diagnostics, or pump-probe experiments, it is desirable to have control over the wave front (WF) of the HHs to maximize the number of XUV photons on target or to tailor the WF. Here, we demonstrate control of the XUV WF by tailoring the driving IR WF with a deformable mirror. The WFs of both IR and XUV beams are monitored with WF sensors. We present a systematic study of the dependence of the aberrations of the HHs on the aberrations of the driving IR laser and explain the observations with propagation simulations. We show that we can control the astigmatism of the HHs by changing the astigmatism of the driving IR laser without compromising the HH generation efficiency with a WF quality from λ/8 to λ/13.3. This allows us to shape the XUV beam without changing any XUV optical element.

9.
J Synchrotron Radiat ; 26(Pt 3): 899-905, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074455

ABSTRACT

Wavefront-propagation simulations have been performed to complete the design of a monochromator beamline for FLASH2, the variable-gap undulator line at the soft X-ray free-electron laser in Hamburg (FLASH). Prior to propagation through the beamline optical elements, the parameters of the photon source were generated using the GENESIS code which includes the free-electron laser experimental data. Threshold tolerances for the misalignment of mirror angles are calculated and, since diffraction effects were included in the simulations, the minimum quality with respect to the slope errors required for the optics is determined.

10.
J Synchrotron Radiat ; 25(Pt 5): 1529-1540, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30179194

ABSTRACT

The non-monochromatic beamline BL1 at the FLASH free-electron laser facility at DESY was upgraded with new transport and focusing optics, and a new permanent end-station, CAMP, was installed. This multi-purpose instrument is optimized for electron- and ion-spectroscopy, imaging and pump-probe experiments at free-electron lasers. It can be equipped with various electron- and ion-spectrometers, along with large-area single-photon-counting pnCCD X-ray detectors, thus enabling a wide range of experiments from atomic, molecular, and cluster physics to material and energy science, chemistry and biology. Here, an overview of the layout, the beam transport and focusing capabilities, and the experimental possibilities of this new end-station are presented, as well as results from its commissioning.

11.
Opt Express ; 26(15): 19665-19685, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30114137

ABSTRACT

Ruthenium is a perspective material to be used for XUV mirrors at free-electron laser facilities. Yet, it is still poorly studied in the context of ultrafast laser-matter interaction. In this work, we present single-shot damage studies of thin Ru films irradiated by femtosecond XUV free-electron laser pulses at FLASH. Ex-situ analysis of the damaged spots, performed by different types of microscopy, shows that the weakest detected damage is surface roughening. For higher fluences we observe ablation of Ru. Combined simulations using Monte-Carlo code XCASCADE(3D) and the two-temperature model reveal that the damage mechanism is photomechanical spallation, similar to the case of irradiating the target with optical lasers. The analogy with the optical damage studies enables us to explain the observed damage morphologies.

12.
J Synchrotron Radiat ; 25(Pt 1): 77-84, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29271755

ABSTRACT

The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

13.
J Synchrotron Radiat ; 25(Pt 1): 131-137, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29271762

ABSTRACT

The preliminary design of a monochromatic beamline for FLASH2 at DESY is presented. The monochromator is tunable in the 50-1000 eV energy range with resolving power higher than 1000 and temporal response below 50 fs over the whole energy range. A time-delay-compensated configuration using the variable-line-spacing monochromator design with two gratings is adopted: the first grating disperses the radiation on its output plane, where the intermediate slit performs the spectral selection; the second grating compensates for the pulse-front tilt and for the spectral dispersion due to diffraction from the first grating.

14.
Opt Express ; 25(15): 17892-17903, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789279

ABSTRACT

Determining fluctuations in focus properties is essential for many experiments at Self-Amplified-Spontaneous-Emission (SASE) based Free-Electron-Lasers (FELs), in particular for imaging single non-crystalline biological particles. We report on a diffractive imaging technique to fully characterize highly focused, single-shot pulses using an iterative phase retrieval algorithm, and benchmark it against an existing Hartmann wavefront sensor. The results, both theoretical and experimental, demonstrate the effectiveness of this technique to provide a comprehensive and convenient shot-to-shot measurement of focused-pulse wave fields and source-point positional variations without the need for manipulative optics between the focus and the detector.

15.
J Synchrotron Radiat ; 23(1): 1-2, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26698038

ABSTRACT

This issue of the Journal of Synchrotron Radiation is a special issue including papers from the PhotonDiag2015 workshop. Here, a brief introduction is given.

16.
J Synchrotron Radiat ; 23(1): 43-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26698044

ABSTRACT

Different types of Hartmann wavefront sensors are presented which are usable for a variety of applications in the soft X-ray spectral region at FLASH, the free-electron laser (FEL) in Hamburg. As a typical application, online measurements of photon beam parameters during mirror alignment are reported on. A compact Hartmann sensor, operating in the wavelength range from 4 to 38 nm, was used to determine the wavefront quality as well as aberrations of individual FEL pulses during the alignment procedure. Beam characterization and alignment of the focusing optics of the FLASH beamline BL3 were performed with λ(13.5 nm)/116 accuracy for wavefront r.m.s. (w(rms)) repeatability, resulting in a reduction of w(rms) by 33% during alignment.

17.
Opt Express ; 22(13): 16571-84, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977906

ABSTRACT

The four-dimensional Wigner distribution function is determined from intensity profiles measured in the focused photon beam of FLASH (Free-electron laser in Hamburg) for a variety of photon beamline settings. The Wigner formalism results in comprehensive coherence information without the requirement of simplifying assumptions on the beam. The entire four-dimensional spatial mutual coherence function, horizontal and vertical coherence lengths and the global degree of coherence are derived and compared to Young's double pinhole measurements [Opt. Express 20, 17480 (2012)].

18.
Nature ; 448(7154): 676-9, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17687320

ABSTRACT

Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging can be used to achieve high resolution, beyond radiation damage limits for biological samples. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.


Subject(s)
Holography/methods , Polystyrenes/chemistry , X-Rays , Electrons , Lasers , Microspheres , Time Factors
19.
Phys Rev Lett ; 98(14): 145502, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17501285

ABSTRACT

At the recently built FLASH x-ray free-electron laser, we studied the reflectivity of Si/C multilayers with fluxes up to 3 x 10(14) W/cm2. Even though the nanostructures were ultimately completely destroyed, we found that they maintained their integrity and reflectance characteristics during the 25-fs-long pulse, with no evidence for any structural changes over lengths greater than 3 A. This experiment demonstrates that with intense ultrafast pulses, structural damage does not occur during the pulse, giving credence to the concept of diffraction imaging of single macromolecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...