Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(8)2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30081480

ABSTRACT

In the last decades, there has been an increasing interest in animal protection and welfare issues. Heart rate variability (HRV) measurement with portable heart rate monitors on cows has established itself as a suitable method for assessing physiological states. However, more forward-looking technologies, already successfully applied to evaluate HRV data, are pushing the market. This study examines the validity and usability of collecting HRV data by exchanging the Polar watch V800 as a receiving unit of the data compared to a custom smartphone application on cows. Therefore, both receivers tap one signal sent by the Polar H7 transmitter simultaneously. Furthermore, there is a lack of suitable methods for the preparation and calculation of HRV parameters, especially for livestock. A method is presented for calculating more robust time domain HRV parameters via median formation. The comparisons of the respective simultaneous recordings were conducted after artifact correction for time domain HRV parameters. High correlations (r = 0.82⁻0.98) for cows as well as for control data set in human being (r = 0.98⁻0.99) were found. The utilization of smart devices and the robust method to determine time domain HRV parameters may be suitable to generate valid HRV data on cows in field-based settings.


Subject(s)
Cloud Computing , Dairying/methods , Heart Rate/physiology , Monitoring, Physiologic/veterinary , Smartphone , Animals , Cattle , Female , Humans
2.
Sensors (Basel) ; 14(4): 7563-79, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24763255

ABSTRACT

The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.


Subject(s)
Automation , Costs and Cost Analysis , Imaging, Three-Dimensional/economics , Imaging, Three-Dimensional/instrumentation , Algorithms , Computer Communication Networks
3.
Sensors (Basel) ; 14(2): 3001-18, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24534920

ABSTRACT

Over the last few years, 3D imaging of plant geometry has become of significant importance for phenotyping and plant breeding. Several sensing techniques, like 3D reconstruction from multiple images and laser scanning, are the methods of choice in different research projects. The use of RGBcameras for 3D reconstruction requires a significant amount of post-processing, whereas in this context, laser scanning needs huge investment costs. The aim of the present study is a comparison between two current 3D imaging low-cost systems and a high precision close-up laser scanner as a reference method. As low-cost systems, the David laser scanning system and the Microsoft Kinect Device were used. The 3D measuring accuracy of both low-cost sensors was estimated based on the deviations of test specimens. Parameters extracted from the volumetric shape of sugar beet taproots, the leaves of sugar beets and the shape of wheat ears were evaluated. These parameters are compared regarding accuracy and correlation to reference measurements. The evaluation scenarios were chosen with respect to recorded plant parameters in current phenotyping projects. In the present study, low-cost 3D imaging devices have been shown to be highly reliable for the demands of plant phenotyping, with the potential to be implemented in automated application procedures, while saving acquisition costs. Our study confirms that a carefully selected low-cost sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...