Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Trace Elem Med Biol ; 83: 127376, 2024 May.
Article in English | MEDLINE | ID: mdl-38183920

ABSTRACT

INTRODUCTION: The increasing prevalence of obesity has become a major health problem worldwide. The causes of obesity are multifactorial and could be influenced by dietary patterns and genetic factors. Obesity has been associated with a decrease in micronutrient intake and consequently decreased blood concentrations. Selenium is an essential micronutrient for human health, and its metabolism could be affected by obesity, especially severe obesity. This study aimed to identify differential methylation genes associated with serum selenium concentration in women with and without obesity. METHODOLOGY: Thirty-four patients were enrolled in the study and divided into two groups: Obese (Ob) n = 20 and Non-Obese (NOb) n = 14, according to the Body Mass Index (BMI). Anthropometry, body composition, serum selenium, selenium intake, and biochemical parameters were evaluated. DNA extraction and bisulfite conversion were performed to hybridize the samples on the 450k Methylation Chip Infinium Beadchip (Illumina). Bioinformatics analysis was performed using the R program and the Champ package. The differentially methylated regions (DMRs) were identified using the Bumphunter method. In addition, logarithmic conversion was performed for the analysis of serum selenium and methylation. RESULTS: In the Ob group, the body weight, BMI, fat mass, and free fat mass were higher than in the NOb group, as expected. Interestingly, the serum selenium was lower in the Ob than in the NOb group without differences in selenium intake. One DMR corresponding to the CPT1B gene, involved in lipid oxidation, was related to selenium levels. This region was hypermethylated in the Ob group, indicating that the intersection between selenium deficiency and hypermethylation could influence the expression of the CPT1B gene. The transcriptional analysis confirmed the lower expression of the CPT1B gene in the Ob group. CONCLUSION: Studies connecting epigenetics to environmental factors could offer insights into the mechanisms involving the expression of genes related to obesity and its comorbidities. Here we demonstrated that the mineral selenium might play an essential role in lipid oxidation via epigenetic and transcriptional regulation of the CPT1B gene in obesity.


Subject(s)
Carnitine O-Palmitoyltransferase , Epigenesis, Genetic , Obesity , Selenium , Female , Humans , Carnitine O-Palmitoyltransferase/metabolism , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation , Lipids , Obesity/genetics , Obesity/metabolism , Selenium/metabolism
2.
Front Cell Neurosci ; 17: 1153198, 2023.
Article in English | MEDLINE | ID: mdl-37362003

ABSTRACT

The potential of fluoride (F) as a neurotoxicant in humans is still controversial in the literature. However, recent studies have raised the debate by showing different mechanism of F-induced neurotoxicity, as oxidative stress, energy metabolism and inflammation in the central nervous system (CNS). In the present study, we investigated the mechanistic action of two F concentration (0.095 and 0.22 µg/ml) on gene and protein profile network using a human glial cell in vitro model over 10 days of exposure. A total of 823 genes and 2,084 genes were modulated after exposure to 0.095 and 0.22 µg/ml F, respectively. Among them, 168 were found to be modulated by both concentrations. The number of changes in protein expression induced by F were 20 and 10, respectively. Gene ontology annotations showed that the main terms were related to cellular metabolism, protein modification and cell death regulation pathways, such as the MAP kinase (MAPK) cascade, in a concentration independent manner. Proteomics confirmed the changes in energy metabolism and also provided evidence of F-induced changes in cytoskeleton components of glial cells. Our results not only reveal that F has the potential to modulate gene and protein profiles in human U87 glial-like cells overexposed to F, but also identify a possible role of this ion in cytoskeleton disorganization.

3.
Biol Trace Elem Res ; 201(3): 1151-1162, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35378667

ABSTRACT

The central nervous system is the main target of MeHg toxicity and glial cells are the first line of defense; however, their true role remains unclear. This study aimed to identify the global map of human glial-like (U87) cells transcriptome after exposure to a non-toxic and non-lethal MeHg concentration and to investigate the related molecular changes. U87 cells were exposed upon 0.1, 0.5, and 1 µM MeHg for 4 and 24 h. Although no changes were observed in the percentage of viable cells, the metabolic viability was significantly decreased after exposure to 1 µM MeHg for 24 h; thus, the non-toxic concentration of 0.1 µM MeHg was chosen to perform microarray analysis. Significant changes in U87 cells transcriptome were observed only after 24 h. The expression of 392 genes was down regulated while 431 genes were up-regulated. Gene ontology showed alterations in biological processes (75%), cellular components (21%), and molecular functions (4%). The main pathways showed by KEGG and Reactome were cell cycle regulation and Rho GTPase signaling. The complex mechanism of U87 cells response against MeHg exposure indicates that even a low and non-toxic concentration is able to alter the gene expression profile.


Subject(s)
Astrocytes , Methylmercury Compounds , Humans , Astrocytes/metabolism , Transcriptome , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , Central Nervous System/metabolism , Signal Transduction
5.
Front Nutr ; 9: 785281, 2022.
Article in English | MEDLINE | ID: mdl-35369101

ABSTRACT

Introduction: Nutriepigenetic markers are predictive responses associated with changes in "surrounding" environmental conditions of humans, which may influence metabolic diseases. Although rich in calories, Western diets could be linked with the deficiency of micronutrients, resulting in the downstream of epigenetic and metabolic effects and consequently in obesity. Zinc (Zn) is an essential nutrient associated with distinct biological roles in human health. Despite the importance of Zn in metabolic processes, little is known about the relationship between Zn and epigenetic. Thus, the present study aimed to identify the epigenetic variables associated with Zn daily ingestion (ZnDI) and serum Zinc (ZnS) levels in women with and without obesity. Materials and Methods: This is a case-control, non-randomized, single-center study conducted with 21 women allocated into two groups: control group (CG), composed of 11 women without obesity, and study group (SG), composed of 10 women with obesity. Anthropometric measurements, ZnDI, and ZnS levels were evaluated. Also, leukocyte DNA was extracted for DNA methylation analysis using 450 k Illumina BeadChips. The epigenetic clock was calculated by Horvath method. The chip analysis methylation pipeline (ChAMP) package selected the differentially methylated regions (DMRs). Results: The SG had lower ZnS levels than the CG. Moreover, in SG, the ZnS levels were negatively associated with the epigenetic age acceleration. The DMR analysis revealed 37 DMRs associated with ZnDI and ZnS levels. The DMR of PM20D1 gene was commonly associated with ZnDI and ZnS levels and was hypomethylated in the SG. Conclusion: Our findings provide new information on Zn's modulation of DNA methylation patterns and bring new perspectives for understanding the nutriepigenetic mechanisms in obesity.

6.
Sci Rep ; 12(1): 5775, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388025

ABSTRACT

Endometriosis is a chronic inflammatory disorder that is highly associated with infertility. This association seems to be related to oocyte impairment, mainly in the initial stages of endometriosis (minimal and mild), where no distortions or adhesions are present. Nonetheless, invasive oocyte analyses are not routinely feasible; thus, indirect assessment of oocyte quality is highly desirable, and, in this context, cumulus cells (CCs) may be more suitable targets of analysis. CCs are crucial in oocyte development and could be used as an index of oocyte quality. Therefore, this prospective case-control study aimed to shed light on the infertility mechanisms of endometriosis I/II by analyzing the CCs' mRNA transcription profile (women with endometriosis I/II, n = 9) compared to controls (women with tubal abnormalities or male factor, n = 9). The transcriptomic analyses of CCs from patients with minimal and mild endometriosis revealed 26 differentially expressed genes compared to the controls. The enrichment analysis evidenced some altered molecular processes: Cytokine-cytokine receptor interactions, Chemokine signaling, TNF signaling, NOD-like receptor signaling, NF-kappa B signaling, and inflammatory response. With the exception of CXCL12, all enriched genes were downregulated in CCs from patients with endometriosis. These findings provide a significant achievement in the field of reproductive biology, directing future studies to discover biomarkers of oocyte quality in endometriosis.


Subject(s)
Endometriosis , Infertility, Female , Case-Control Studies , Cumulus Cells/metabolism , Endometriosis/metabolism , Female , Humans , Infertility, Female/metabolism , Male , Oocytes/metabolism , Transcriptome
7.
Cancers (Basel) ; 14(5)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35267654

ABSTRACT

Multiple gene expression profiles have been identified in diffuse large B-cell lymphoma (DLBCL). Besides the cell of origin (COO) classifier, no signatures have been reproduced in independent studies or evaluated for capturing distinct aspects of DLBCL biology. We reproduced 4 signatures in 175 samples of the HOVON-84 trial on a panel of 117 genes using the NanoString platform. The four gene signatures capture the COO, MYC activity, B-cell receptor signaling, oxidative phosphorylation, and immune response. Performance of our classification algorithms were confirmed in the original datasets. We were able to validate three of the four GEP signatures. The COO algorithm resulted in 94 (54%) germinal center B-cell (GCB) type, 58 (33%) activated B-cell (ABC) type, and 23 (13%) unclassified cases. The MYC-classifier revealed 77 cases with a high MYC-activity score (44%) and this MYC-high signature was observed more frequently in ABC as compared to GCB DLBCL (68% vs. 32%, p < 0.00001). The host response (HR) signature of the consensus clustering was present in 55 (31%) patients, while the B-cell receptor signaling, and oxidative phosphorylation clusters could not be reproduced. The overlap of COO, consensus cluster and MYC activity score differentiated six gene expression clusters: GCB/MYC-high (12%), GCB/HR (16%), GCB/non-HR (27%), COO-Unclassified (13%), ABC/MYC-high (25%), and ABC/MYC-low (7%). In conclusion, the three validated signatures identify distinct subgroups based on different aspects of DLBCL biology, emphasizing that each classifier captures distinct molecular profiles.

8.
Tumour Biol ; 43(1): 263-278, 2021.
Article in English | MEDLINE | ID: mdl-34633333

ABSTRACT

BACKGROUND: Expression dysregulation of HOX homeobox genes has been observed in several cancers, including head and neck squamous cell carcinoma (HNSC). Although characterization of HOX gene roles in HNSC development has been reported, there is still a need to better understand their real contribution to tumorigenesis. OBJECTIVE: The present study aimed to evaluate the contribution of the protein-coding HOX genes (HOXA10, HOXC9, HOXC10, and HOXC13) in cellular processes related to carcinogenesis and progression of the HNSC. METHODS: Expression of HOX genes was analyzed in HNSC RNA-Seq data from The Cancer Genome Atlas (TCGA) and by RT-qPCR in different tumor cell lines. siRNA-mediated knockdown of HOXA10, HOXC9, HOXC10 or HOXC13 was performed in HNSC cell lines, and predicted transcriptional targets HOX genes was analyzed by bioinformatic. RESULTS: Thirty-one out of the 39 mammalian HOX genes were found upregulated in HNSC tissues and cell lines. The HOXC9, HOXC10 or HOXC13 knockdown attenuated cell migration, and lead to downregulation of epithelial-mesenchymal transition (EMT) markers, which were predicted as transcriptional targets of these three HOX genes. Diminished colony formation and cell cycle arrest after HOXC10 or HOXC13 knockdown were also observed, corroborating the fact that there was an enrichment for genes in proliferation/cell cycle pathways. CONCLUSIONS: In summary, we revealed roles for HOXC9, HOXC10, and HOXC13 in cell migration and proliferation/cell cycle progression in HNSC cells and suggested that those HOX members contribute to HNSC development possibly by regulating tumor growth and metastasis.


Subject(s)
Genes, Homeobox/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Animals , Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Up-Regulation
9.
Front Pharmacol ; 12: 698671, 2021.
Article in English | MEDLINE | ID: mdl-34512333

ABSTRACT

In Brazilian northern Amazon, communities are potentially exposed and vulnerable to methylmercury (MeHg) toxicity through the vast ingestion of fish. In vivo and in vitro studies demonstrated that the salivary glands as a susceptible organ to this potent environmental pollutant, reporting alterations on physiological, biochemical, and proteomic parameters. However, the alterations caused by MeHg on the gene expression of the exposed human salivary gland cells are still unknown. Therefore, the goal was to perform the transcriptome profile of the human salivary gland cell line after exposure to MeHg, using the microarray technique and posterior bioinformatics analysis. The cell exposure was performed using 2.5 µM MeHg. A previously published study demonstrated that this concentration belongs to a range of concentrations that caused biochemical and metabolic alterations in this linage. As a result, the MeHg exposure did not cause lethality in the human salivary gland cells line but was able to alter the expression of 155 genes. Downregulated genes (15) are entirety relating to the cell metabolism impairment, and according to KEGG analysis, they belong to the glycosphingolipid (GSL) biosynthesis pathway. On the other hand, most of the 140 upregulated genes were related to cell-cycle progression, DNA repair, and replication pathway, or cellular defenses through the GSH basal metabolism. These genomic changes revealed the effort to the cell to maintain physiological and genomic stability to avoid cell death, being in accordance with the nonlethality in the toxicity test. Last, the results support in-depth studies on nonlethal MeHg concentrations for biomarkers identification that interpret transcriptomics data in toxicological tests serving as an early alert of physiological changes in vitro biological models.

10.
Rev Bras Ginecol Obstet ; 43(6): 457-466, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34318471

ABSTRACT

OBJECTIVE: Abnormalities in the eutopic endometrium of women with endometriosis may be related to disease-associated infertility. Although previous RNA-sequencing analysis did not show differential expression in endometrial transcripts of endometriosis patients, other molecular alterations could impact protein synthesis and endometrial receptivity. Our aim was to screen for functional mutations in the transcripts of eutopic endometria of infertile women with endometriosis and controls during the implantation window. METHODS: Data from RNA-Sequencing of endometrial biopsies collected during the implantation window from 17 patients (6 infertile women with endometriosis, 6 infertile controls, 5 fertile controls) were analyzed for variant discovery and identification of functional mutations. A targeted study of the alterations found was performed to understand the data into disease's context. RESULTS: None of the variants identified was common to other samples within the same group, and no mutation was repeated among patients with endometriosis, infertile and fertile controls. In the endometriosis group, nine predicted deleterious mutations were identified, but only one was previously associated to a clinical condition with no endometrial impact. When crossing the mutated genes with the descriptors endometriosis and/or endometrium, the gene CMKLR1 was associated either with inflammatory response in endometriosis or with endometrial processes for pregnancy establishment. CONCLUSION: Despite no pattern of mutation having been found, we ponder the small sample size and the analysis on RNA-sequencing data. Considering the purpose of the study of screening and the importance of the CMKLR1 gene on endometrial modulation, it could be a candidate gene for powered further studies evaluating mutations in eutopic endometria from endometriosis patients.


OBJETIVO: Anormalidades no endométrio eutópico de mulheres com endometriose podem estar relacionadas à infertilidade associada à doença. Embora a análise prévia de sequenciamento de RNA não tenha evidenciado expressão diferencial em transcritos endometriais de pacientes com endometriose, outras alterações moleculares poderiam afetar a síntese de proteínas e a receptividade endometrial. Nosso objetivo foi rastrear mutações funcionais em transcritos de endométrios eutópicos de mulheres inférteis com endometriose e de controles durante a janela de implantação. MéTODOS: Os dados do sequenciamento de RNA de biópsias endometriais coletados durante a janela de implantação de 17 pacientes (6 mulheres inférteis com endometriose, 6 controles inférteis, 5 controles férteis) foram analisados para a descoberta de variantes e a identificação de mutações funcionais. Um estudo direcionado das alterações encontradas foi realizado para compreender os dados no contexto da doença. RESULTADOS: Nenhuma das variantes identificadas foi comum a outras amostras dentro do mesmo grupo, assim como nenhuma mutação se repetiu entre pacientes com endometriose, controles inférteis e férteis. No grupo de endometriose, foram identificadas nove mutações deletérias preditas, mas apenas uma foi previamente associada a uma condição clínica sem impacto endometrial. Ao cruzar os genes mutados com os descritores endometriose e/ou endométrio, o gene CMKLR1 foi associado a resposta inflamatória na endometriose e a processos endometriais para estabelecimento da gravidez. CONCLUSãO: Apesar de nenhum padrão de mutação ter sido encontrado, ponderamos o pequeno tamanho da amostra e a análise dos dados de sequenciamento de RNA. Considerando o objetivo do estudo de triagem e a importância do gene CMKLR1 na modulação endometrial, este poderia ser um gene candidato para estudos adicionais que avaliem mutações no endométrio eutópico de pacientes com endometriose.


Subject(s)
Embryo Implantation , Endometriosis/complications , Endometriosis/genetics , Endometrium/metabolism , Infertility, Female/etiology , Mutation , Sequence Analysis, RNA , Case-Control Studies , Computer Simulation , Female , Humans , Infertility, Female/metabolism , Pregnancy , Prospective Studies , Receptors, Chemokine/genetics
11.
Front Mol Biosci ; 8: 679548, 2021.
Article in English | MEDLINE | ID: mdl-34141725

ABSTRACT

Human periodontal ligament fibroblast (hPLF) cells play an important role in maintaining oral cavity homeostasis with special function in tissue regeneration and maintenance of dental alveoli. Although their primary cell cultures are considered a good experimental model with no genetic changes, the finite life span may limit some experimental designs. The immortalization process increases cell life span but may cause genetic changes and chromosomal instability, resulting in direct effects on physiological cell responses. In this way, we aimed to investigate the global gene expression of hPLFs after the immortalization process by the ectopic expression of the catalytic subunit of the enzyme telomerase reverse transcriptase (hTERT) through transcriptome analysis. The embryonic origin of the primary culture of hPLF cells and immortalized hPLF-hTERT was also tested by vimentin staining, hTERT synthesis evaluated by indirect immunocytochemistry, analysis of cell proliferation, and morphology. The results indicated that hPLFs and hPLF-hTERT were positive for vimentin. On the 20th cell passage, hPLFs were in senescence, while hPLF-hTERT maintained their proliferation and morphology characteristics. At the same passage, hPLF-hTERT presented a significant increase in hTERT synthesis, but transcriptome did not reveal overexpression of the hTERT gene. Fifty-eight genes had their expression altered (11 upregulated and 47 downregulated) with the absence of changes in the key genes related to these cell types and in the main cancer-associated genes. In addition, the increase in hTERT protein expression without the overexpression of its gene indicates posttranscriptional level regulation. Successful immortalization of hPLFs through the ectopic expression of hTERT encourages further studies to design experimental protocols to investigate clinical questions from a translational perspective.

12.
Rev. bras. ginecol. obstet ; 43(6): 457-466, June 2021. tab, graf
Article in English | LILACS | ID: biblio-1341145

ABSTRACT

Abstract Objective Abnormalities in the eutopic endometrium of women with endometriosis may be related to disease-associated infertility. Although previous RNA-sequencing analysis did not show differential expression in endometrial transcripts of endometriosis patients, other molecular alterations could impact protein synthesis and endometrial receptivity. Our aim was to screen for functional mutations in the transcripts of eutopic endometria of infertile women with endometriosis and controls during the implantation window. Methods Data from RNA-Sequencing of endometrial biopsies collected during the implantation window from 17 patients (6 infertile women with endometriosis, 6 infertile controls, 5 fertile controls) were analyzed for variant discovery and identification of functional mutations. A targeted study of the alterations found was performed to understand the data into disease's context. Results None of the variants identified was common to other samples within the same group, and no mutation was repeated among patients with endometriosis, infertile and fertile controls. In the endometriosis group, nine predicted deleterious mutations were identified, but only one was previously associated to a clinical condition with no endometrial impact. When crossing the mutated genes with the descriptors endometriosis and/or endometrium, the gene CMKLR1 was associated either with inflammatory response in endometriosis or with endometrial processes for pregnancy establishment. Conclusion Despite no pattern of mutation having been found, we ponder the small sample size and the analysis on RNA-sequencing data. Considering the purpose of the study of screening and the importance of the CMKLR1 gene on endometrial


Resumo Objetivo Anormalidades no endométrio eutópico de mulheres com endometriose podem estar relacionadas à infertilidade associada à doença. Embora a análise prévia de sequenciamento de RNA não tenha evidenciado expressão diferencial em transcritos endometriais de pacientes com endometriose, outras alterações moleculares poderiam afetar a síntese de proteínas e a receptividade endometrial. Nosso objetivo foi rastrear mutações funcionais em transcritos de endométrios eutópicos de mulheres inférteis com endometriose e de controles durante a janela de implantação. Métodos Os dados do sequenciamento de RNA de biópsias endometriais coletados durante a janela de implantação de 17 pacientes (6 mulheres inférteis com endometriose, 6 controles inférteis, 5 controles férteis) foram analisados para a descoberta de variantes e a identificação de mutações funcionais. Um estudo direcionado das alterações encontradas foi realizado para compreender os dados no contexto da doença. Resultados Nenhuma das variantes identificadas foi comuma outras amostras dentro do mesmo grupo, assim como nenhuma mutação se repetiu entre pacientes com endometriose, controles inférteis e férteis. No grupo de endometriose, foram identificadas nove mutações deletérias preditas, mas apenas uma foi previamente associada a uma condição clínica sem impacto endometrial. Ao cruzar os genes mutados com os descritores endometriose e/ou endométrio, o gene CMKLR1 foi associado a resposta inflamatória na endometriose e a processos endometriais para estabelecimento da gravidez. Conclusão Apesar de nenhum padrão de mutação ter sido encontrado, ponderamos o pequeno tamanho da amostra e a análise dos dados de sequenciamento de RNA. Considerando o objetivo do estudo de triagem e a importância do gene CMKLR1 na modulação endometrial, este poderia ser um gene candidato para estudos adicionais que avaliem mutações no endométrio eutópico de pacientes com endometriose.


Subject(s)
Humans , Female , Pregnancy , Embryo Implantation , Sequence Analysis, RNA , Endometriosis/complications , Endometriosis/genetics , Endometrium/metabolism , Infertility, Female/etiology , Mutation , Computer Simulation , Case-Control Studies , Prospective Studies , Receptors, Chemokine/genetics , Infertility, Female/metabolism
13.
BMC Cancer ; 21(1): 207, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33648461

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide; it is the fourth leading cause of death in the world and the third in Brazil. Mutations in the APC, DCC, KRAS and TP53 genes have been associated with the progression of sporadic CRC, occurring at defined pathological stages of the tumor progression and consequently modulating several genes in the corresponding signaling pathways. Therefore, the identification of gene signatures that occur at each stage during the CRC progression is critical and can present an impact on the diagnosis and prognosis of the patient. In this study, our main goal was to determine these signatures, by evaluating the gene expression of paired colorectal adenoma and adenocarcinoma samples to identify novel genetic markers in association to the adenoma-adenocarcinoma stage transition. METHODS: Ten paired adenoma and adenocarcinoma colorectal samples were subjected to microarray gene expression analysis. In addition, mutations in APC, KRAS and TP53 genes were investigated by DNA sequencing in paired samples of adenoma, adenocarcinoma, normal tissue, and peripheral blood from ten patients. RESULTS: Gene expression analysis revealed a signature of 689 differentially expressed genes (DEG) (fold-change> 2, p< 0.05), between the adenoma and adenocarcinoma paired samples analyzed. Gene pathway analysis using the 689 DEG identified important cancer pathways such as remodeling of the extracellular matrix and epithelial-mesenchymal transition. Among these DEG, the ETV4 stood out as one of the most expressed in the adenocarcinoma samples, further confirmed in the adenocarcinoma set of samples from the TCGA database. Subsequent in vitro siRNA assays against ETV4 resulted in the decrease of cell proliferation, colony formation and cell migration in the HT29 and SW480 colorectal cell lines. DNA sequencing analysis revealed KRAS and TP53 gene pathogenic mutations, exclusively in the adenocarcinomas samples. CONCLUSION: Our study identified a set of genes with high potential to be used as biomarkers in CRC, with a special emphasis on the ETV4 gene, which demonstrated involvement in proliferation and migration.


Subject(s)
Adenocarcinoma/genetics , Adenoma/genetics , Colorectal Neoplasms/genetics , Genes, Neoplasm , Neoplasm Proteins/physiology , Proto-Oncogene Proteins c-ets/physiology , Adenocarcinoma/chemistry , Adenocarcinoma/pathology , Adenoma/chemistry , Adenoma/pathology , Aged , Biomarkers, Tumor/genetics , Brazil , Cell Division/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/chemistry , Colorectal Neoplasms/pathology , DNA, Neoplasm/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Male , Middle Aged , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Tissue Array Analysis , Transcriptome , Tumor Stem Cell Assay
14.
Tumour Biol ; 42(5): 1010428320918050, 2020 May.
Article in English | MEDLINE | ID: mdl-32456563

ABSTRACT

Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Genes, Homeobox/genetics , Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Multigene Family/genetics , Transcription Factors/genetics
15.
BMC Med Genomics ; 13(1): 21, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32039725

ABSTRACT

BACKGROUND: The Hereditary Breast and Ovarian Cancer Syndrome (HBOC) occurs in families with a history of breast/ovarian cancer, presenting an autosomal dominant inheritance pattern. BRCA1 and BRCA2 are high penetrance genes associated with an increased risk of up to 20-fold for breast and ovarian cancer. However, only 20-30% of HBOC cases present pathogenic variants in those genes, and other DNA repair genes have emerged as increasing the risk for HBOC. In Brazil, variants in ATM, ATR, CHEK2, MLH1, MSH2, MSH6, POLQ, PTEN, and TP53 genes have been reported in up to 7.35% of the studied cases. Here we screened and characterized variants in 21 DNA repair genes in HBOC patients. METHODS: We systematically analyzed 708 amplicons encompassing the coding and flanking regions of 21 genes related to DNA repair pathways (ABRAXAS1, ATM, ATR, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MRE11, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD50, RAD51, TP53 and UIMC1). A total of 95 individuals with HBOC syndrome clinical suspicion in Southeast Brazil were sequenced, and 25 samples were evaluated for insertions/deletions in BRCA1/BRCA2 genes. Identified variants were assessed in terms of population allele frequency and their functional effects were predicted through in silico algorithms. RESULTS: We identified 80 variants in 19 genes. About 23.4% of the patients presented pathogenic variants in BRCA1, BRCA2 and TP53, a frequency higher than that identified among previous studies in Brazil. We identified a novel variant in ATR, which was predicted as pathogenic by in silico tools. The association analysis revealed 13 missense variants in ABRAXAS1, BARD1, BRCA2, CHEK2, CDH1, MLH1, PALB2, and PMS2 genes, as significantly associated with increased risk to HBOC, and the patients carrying those variants did not present large insertions or deletions in BRCA1/BRCA2 genes. CONCLUSIONS: This study embodies the third report of a multi-gene analysis in the Brazilian population, and addresses the first report of many germline variants associated with HBOC in Brazil. Although further functional analyses are necessary to better characterize the contribution of those variants to the phenotype, these findings would improve the risk estimation and clinical follow-up of patients with HBOC clinical suspicion.


Subject(s)
Algorithms , Computer Simulation , Germ-Line Mutation , Hereditary Breast and Ovarian Cancer Syndrome/genetics , INDEL Mutation , Neoplasm Proteins/genetics , Adult , Aged , Brazil , Female , Humans , Male , Middle Aged
16.
Sci Rep ; 9(1): 11350, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31383874

ABSTRACT

Melanoma is the deadliest form of skin cancer, and little is known about the impact of deregulated expression of long noncoding RNAs (lncRNAs) in the progression of this cancer. In this study, we explored RNA-Seq data to search for lncRNAs associated with melanoma progression. We found distinct lncRNA gene expression patterns across melanocytes, primary and metastatic melanoma cells. Also, we observed upregulation of the lncRNA ZEB1-AS1 (ZEB1 antisense RNA 1) in melanoma cell lines. Data analysis from The Cancer Genome Atlas (TCGA) confirmed higher ZEB1-AS1 expression in metastatic melanoma and its association with hotspot mutations in BRAF (B-Raf proto-oncogene, serine/threonine kinase) gene and RAS family genes. In addition, a positive correlation between ZEB1-AS1 and ZEB1 (zinc finger E-box binding homeobox 1) gene expression was verified in primary and metastatic melanomas. Using gene expression signatures indicative of invasive or proliferative phenotypes, we found an association between ZEB1-AS1 upregulation and a transcriptional profile for invasiveness. Enrichment analysis of correlated genes demonstrated cancer genes and pathways associated with ZEB1-AS1. We suggest that the lncRNA ZEB1-AS1 could function by activating ZEB1 gene expression, thereby influencing invasiveness and phenotype switching in melanoma, an epithelial-to-mesenchymal transition (EMT)-like process, which the ZEB1 gene has an essential role.


Subject(s)
Genetic Association Studies , Melanoma/genetics , Neoplasm Invasiveness/genetics , RNA, Long Noncoding/genetics , Transcriptome/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Genetic Predisposition to Disease , Humans , Male , Melanoma/pathology , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Proto-Oncogene Mas
17.
Cancer Res ; 79(13): 3294-3305, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31101765

ABSTRACT

Dysregulation of miRNA expression is associated with multiple diseases, including cancers, in which small RNAs can have either oncogenic or tumor suppressive functions. Here we investigated the potential tumor suppressive function of miR-450a, one of the most significantly downregulated miRNAs in ovarian cancer. RNA-seq analysis of the ovarian cancer cell line A2780 revealed that overexpression of miR-450a suppressed multiple genes involved in the epithelial-to-mesenchymal transition (EMT). Overexpression of miR-450a reduced tumor migration and invasion and increased anoikis in A2780 and SKOV-3 cell lines and reduced tumor growth in an ovarian tumor xenographic model. Combined AGO-PAR-CLIP and RNA-seq analysis identified a panel of potential miR-450a targets, of which many, including TIMMDC1, MT-ND2, ACO2, and ATP5B, regulate energetic metabolism. Following glutamine withdrawal, miR-450a overexpression decreased mitochondrial membrane potential but increased glucose uptake and viability, characteristics of less invasive ovarian cancer cell lines. In summary, we propose that miR-450a acts as a tumor suppressor in ovarian cancer cells by modulating targets associated with glutaminolysis, which leads to decreased production of lipids, amino acids, and nucleic acids, as well as inhibition of signaling pathways associated with EMT. SIGNIFICANCE: miR-450a limits the metastatic potential of ovarian cancer cells by targeting a set of mitochondrial mRNAs to reduce glycolysis and glutaminolysis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/13/3294/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/metabolism , Energy Metabolism , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Female , Humans , Membrane Potential, Mitochondrial , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Ovarian Neoplasms/genetics , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
Am J Transl Res ; 10(12): 4065-4081, 2018.
Article in English | MEDLINE | ID: mdl-30662651

ABSTRACT

BACKGROUND: Endothelial-mesenchymal transition (EndMT) is a complex process whereby differentiated endothelial cells undergo phenotypic transition to mesenchymal cells. EndMT can be stimulated by several factors and the most common are the transforming growth factor-beta (TGF-ß) and SNAIL transcription factor. Given the diversity of the vascular system, it is unclear whether endothelial cells lining different vessels are able to undergo EndMT through the same mechanisms. Here we evaluate the molecular and functional changes that occur in different types of endothelial cells following induction of EndMT by overexpression of SNAIL and TGF-ß2. RESULTS: We found that responses to induction by SNAIL are determined by cell origin and marker expression. Human coronary endothelial cells (HCAECs) showed the greatest EndMT responses evidenced by significant reciprocal changes in the expression of mesenchymal and endothelial markers, effects that were potentiated by a combination of SNAIL and TGF-ß2. Key molecular events associated with EndMT driven by SNAIL/TGF-ß2 involved extracellular-matrix remodeling and inflammation (IL-8, IL-12, IGF-1, and TREM-1 signaling). Notch signaling pathway members DLL4, NOTCH3 and NOTCH4 as well as members of the Wnt signaling pathway FZD2, FZD9, and WNT5B were altered in the combination treatment strategy, implicating Notch and Wnt signaling pathways in the induction process. CONCLUSION: Our results provide a foundation for understanding the roles of specific signaling pathways in mediating EndMT in endothelial cells from different anatomical origins.

19.
Sci Rep ; 7(1): 1662, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28490781

ABSTRACT

Papillary Thyroid Cancer (PTC) is an endocrine malignancy in which BRAFV600E oncogenic mutation induces the most aggressive phenotype. In this way, considering that lncRNAs are arising as key players in oncogenesis, it is of high interest the identification of BRAFV600E-associated long noncoding RNAs, which can provide possible candidates for secondary mechanisms of BRAF-induced malignancy in PTC. In this study, we identified differentially expressed lncRNAs correlated with BRAFV600E in PTC and, also, extended the cohort of paired normal and PTC samples to more accurately identify differentially expressed lncRNAs between these conditions. Indirectly validated targets of the differentially expressed lncRNAs in PTC compared to matched normal samples demonstrated an involvement in surface receptors responsible for signal transduction and cell adhesion, as well as, regulation of cell death, proliferation and apoptosis. Targets of BRAFV600E-correlated lncRNAs are mainly involved in calcium signaling pathway, ECM-receptor interaction and MAPK pathway. In summary, our study provides candidate lncRNAs that can be either used for future studies related to diagnosis/prognosis or as targets for PTC management.


Subject(s)
Computational Biology/methods , Gene Expression Regulation, Neoplastic , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , RNA, Long Noncoding/genetics , Thyroid Cancer, Papillary/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cluster Analysis , Down-Regulation/genetics , Gene Expression Profiling , Humans , Reproducibility of Results , Up-Regulation/genetics
20.
Reprod. clim ; 32(2)2017. ilus, tab
Article in Portuguese | LILACS | ID: biblio-883381

ABSTRACT

Objetivos: Alterações moleculares no endométrio eutópico de mulheres com endometriose podem estar envolvidas na infertilidade associada à doença. Este estudo objetivou comparar os genes diferencialmente expressos (DEG) no endométrio eutópico de mulheres inférteis com endometriose, controles inférteis (CI; fator masculino e/ou tubário) e controles férteis (CF) durante a janela de implantação, através de RNA­Seq. Material e métodos: Biópsias endometriais foram obtidas de 17 pacientes (seis inférteis com endometriose, seis CI e cinco CF) durante a janela de implantação. O RNA total foi extraído e o RNA­Seq foi feito na plataforma Illumina HISEQ 2500, high output, paired end. A normalização dos dados e a expressão diferencial foram conduzidas no ambiente estatístico R através do pacote DESeq2. Resultados: Os grupos CI e CF foram semelhantes. Nenhum DEG foi identificado quando comparados os grupos CF e endometriose (independentemente do estágio da doença). Cinco DEGs (SCUBE1, CCL20, LGALS9C, TRIM 29 e WNT11) foram identificados no grupo endometriose avançada (EIII/IV) e um DEG (KANSL1­AS1) no grupo endometriose inicial (EI/II), quando comparados com o CF. Dois DEGs (KANSL1­AS1 e VGLL3) foram identificados com a comparação de EI/II e EIII/IV. Conclusões: Os dados sugerem que o endométrio eutópico de mulheres inférteis com endometriose, especialmente na doença avançada, seja molecularmente diferente do endométrio eutópico de mulheres férteis durante a janela de implantação.(AU)


Molecular alterations in the eutopic endometrium of women with endometriosis may be involved in the endometriosis­related infertility. This study aimed to compare the differentially expressed genes (DEG) in eutopic endometrium of infertile women with endometriosis, infertile controls (IC; male and/or tubal factor) and fertile controls (FC) through RNA­Seq. Material and methods: Endometrial biopsies were obtained from 17 patiens (6 infertile women with endometriosis, 6 IC and 5 FC) during the implantation window. The RNA was extracted and the RNA­Seq was performed at a HISEQ 2500 Illumina Platform, high output, paired end. Standardization and differential expression were conducted in the statistical R environment using DESeq2 package. Results: The groups IC and FC were similar. No DEG has been identified comparing CF and endometriosis groups. Five DEGs (SCUBE1, CCL20, LGALS9C, TRIM 29 e WNT11) were identified in the advanced endometriosis (EIII/IV) group, and 1 (KANSL1­AS1) in the initial endometriosis (EI/II) group compared to FC. Two DEGs (KANSL1­AS1 and VGLL3) were identified by comparing EI/II and EIII/IV groups. Conclusions: These data suggest that the eutopic endometrium of infertile women with endometriosis, especially those with advanced disease, may be molecularly different from those of fertile women during the implantation window.(AU)


Subject(s)
Humans , Female , Adult , Middle Aged , Young Adult , Endometriosis , Endometrium , Infertility, Female , RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...