Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Neurosci Methods ; 404: 110059, 2024 04.
Article in English | MEDLINE | ID: mdl-38218387

ABSTRACT

BACKGROUND: Chemical fixation of the brain can be executed through either the immersion method or the perfusion method. Perfusion fixation allows for better preservation of the brain tissue's ultrastructure, as it provides rapid and uniform delivery of the fixative to the tissue. Still, not all facilities have the expertise to perform perfusion fixation, with initial high cost and complexity of perfusion systems as the main factors limiting its widespread usage. NEW METHOD: Here we present our low-cost approach of whole brain ex situ perfusion fixation to overcome the aforementioned limitations. Our self-made perfusion system, constructed utilising commercially accessible and affordable medical resources alongside laboratory and everyday items, demonstrates the capability to generate superior histological stainings of brain tissue. The perfused tissue can be stored prior to proceeding with IHC for at least one year. RESULTS: Our method yielded high-quality results in histological stainings using both free-floating cryosections and paraffin-embedded tissue sections. The system is fully reusable and complies with the principles of sustainable management. COMPARISON WITH EXISTING METHODS: Our whole brain perfusion system has been assembled from simple components and is able to achieve a linear flow with a pressure of 70 mmHg corresponding to the perfusion pressure of the brain. CONCLUSIONS: Our ex situ method can be especially useful in research settings where expensive perfusion systems are not affordable or in any field with high time pressure, making it suitable for the field of forensic medicine or pathology in general.


Subject(s)
Brain , Humans , Immunohistochemistry , Cost-Benefit Analysis , Perfusion/methods , Fixatives , Brain/pathology
2.
Front Endocrinol (Lausanne) ; 14: 1234925, 2023.
Article in English | MEDLINE | ID: mdl-37900147

ABSTRACT

Aim: Wolfram Syndrome (WS) is a rare condition caused by mutations in Wfs1, with a poor prognosis and no cure. Mono-agonists targeting the incretin glucagon-like-peptide 1 (GLP-1) have demonstrated disease-modifying potential in pre-clinical and clinical settings. Dual agonists that target GLP-1 and glucose-dependent insulinotropic polypeptide (GIP-1) are reportedly more efficacious; hence, we evaluated the therapeutic potential of dual incretin agonism in a loss-of-function rat model of WS. Methods: Eight-month-old Wfs1 knock-out (KO) and wild-type control rats were continuously treated with either the dual agonist DA-CH5 or saline for four months. Glycemic profile, visual acuity and hearing sensitivity were longitudinally monitored pre-treatment, and then at 10.5 and 12 months. Pancreata and retina were harvested for immunohistological analysis. Results: DA-CH5 therapy reversed glucose intolerance in KO rats and provided lasting anti-diabetogenic protection. Treatment also reversed intra-islet alterations, including reduced endocrine islet area and ß-cell density, indicating its regenerative potential. Although no rescue effect was noted for hearing loss, visual acuity and retinal ganglion cell density were better preserved in DA-CH5-treated rats. Conclusion: We present preclinical evidence for the pleiotropic therapeutic effects of long-term dual incretin agonist treatment; effects were seen despite treatment beginning after symptom-onset, indicating reversal of disease progression. Dual incretins represent a promising therapeutic avenue for WS patients.


Subject(s)
Insulin-Secreting Cells , Wolfram Syndrome , Humans , Rats , Animals , Infant , Incretins/pharmacology , Wolfram Syndrome/drug therapy , Glucagon-Like Peptide 1/pharmacology , Gastric Inhibitory Polypeptide
3.
Genes (Basel) ; 14(4)2023 03 30.
Article in English | MEDLINE | ID: mdl-37107585

ABSTRACT

Biallelic mutations in the gene encoding WFS1 underlie the development of Wolfram syndrome (WS), a rare neurodegenerative disorder with no available cure. We have previously shown that Wfs1 deficiency can impair the functioning of the renin-angiotensin-aldosterone system (RAAS). The expression of two key receptors, angiotensin II receptor type 2 (Agtr2) and bradykinin receptor B1 (Bdkrb1), was downregulated both in vitro and in vivo across multiple organs in a rat model of WS. Here, we show that the expression of key RAAS components is also dysregulated in neural tissue from aged WS rats and that these alterations are not normalized by pharmacological treatments (liraglutide (LIR), 7,8-dihydroxyflavone (7,8-DHF) or their combination). We found that the expression of angiotensin II receptor type 1a (Agtr1a), angiotensin II receptor type 1b (Agtr1b), Agtr2 and Bdkrb1 was significantly downregulated in the hippocampus of WS animals that experienced chronic experimental stress. Treatment-naïve WS rats displayed different gene expression patterns, underscoring the effect of prolonged experiment-induced stress. Altogether, we posit that Wfs1 deficiency disturbs RAAS functioning under chronic stressful conditions, thereby exacerbating neurodegeneration in WS.


Subject(s)
Wolfram Syndrome , Rats , Animals , Wolfram Syndrome/genetics , Renin-Angiotensin System/genetics , Liraglutide/pharmacology , Receptors, Angiotensin/metabolism , Calmodulin-Binding Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism
5.
Brain Sci ; 12(12)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36552158

ABSTRACT

In GWAS studies, the neural adhesion molecule encoding the neuronal growth regulator 1 (NEGR1) gene has been consistently linked with both depression and obesity. Although the linkage between NEGR1 and depression is the strongest, evidence also suggests the involvement of NEGR1 in a wide spectrum of psychiatric conditions. Here we show the expression of NEGR1 both in tyrosine- and tryptophan hydroxylase-positive cells. Negr1-/- mice show a time-dependent increase in behavioral sensitization to amphetamine associated with increased dopamine release in both the dorsal and ventral striatum. Upregulation of transcripts encoding dopamine and serotonin transporters and higher levels of several monoamines and their metabolites was evident in distinct brain areas of Negr1-/- mice. Chronic (23 days) escitalopram-induced reduction of serotonin and dopamine turnover is enhanced in Negr1-/- mice, and escitalopram rescued reduced weight of hippocampi in Negr1-/- mice. The current study is the first to show alterations in the brain monoaminergic systems in Negr1-deficient mice, suggesting that monoaminergic neural circuits contribute to both depressive and obesity-related phenotypes linked to the human NEGR1 gene.

6.
PLoS One ; 17(6): e0268806, 2022.
Article in English | MEDLINE | ID: mdl-35687549

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2-specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum immediately before calving. Here, we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks the interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persisted on the nasal mucosa for at least 4 hours, as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for rapid and versatile adaptation for preparing prophylactic treatments against other diseases using the defined characteristics of antibody movement into the colostrum.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cattle , Colostrum/metabolism , Female , Humans , Pregnancy , Spike Glycoprotein, Coronavirus
7.
Biochem Biophys Rep ; 30: 101250, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35295995

ABSTRACT

The protein wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. Mutations in Wfs1 gene cause autosomal recessive disorder Wolfram syndrome (WS). The first symptom of the WS is diabetes mellitus, so accurate diagnosis of the disease as WS is often delayed. In this study we aimed to characterize the role of the Wfs1 deficiency on bioenergetics of muscles. Alterations in the bioenergetic profiles of Wfs1-exon-5-knock-out (Wfs1KO) male rats in comparison with their wild-type male littermates were investigated using high-resolution respirometry, and enzyme activity measurements. The changes were followed in oxidative (cardiac and soleus) and glycolytic (rectus femoris and gastrocnemius) muscles. There were substrate-dependent alterations in the oxygen consumption rate in Wfs1KO rat muscles. In soleus muscle, decrease in respiration rate was significant in all the followed pathways. The relatively small alterations in muscle during development of WS, such as increased mitochondrial content and/or increase in the OxPhos-related enzymatic activity could be an adaptive response to changes in the metabolic environment. The significant decrease in the OxPhos capacity is substrate dependent indicating metabolic inflexibility when multiple substrates are available.

8.
Free Radic Biol Med ; 177: 370-380, 2021 12.
Article in English | MEDLINE | ID: mdl-34728372

ABSTRACT

Increased tissue content of long-chain acylcarnitines may induce mitochondrial and cardiac damage by stimulating ROS production. N6-trimethyllysine dioxygenase (TMLD) is the first enzyme in the carnitine/acylcarnitine biosynthesis pathway. Inactivation of the TMLHE gene (TMLHE KO) in mice is expected to limit long-chain acylcarnitine synthesis and thus induce a cardio- and mitochondria-protective phenotype. TMLHE gene deletion in male mice lowered acylcarnitine concentrations in blood and cardiac tissues by up to 85% and decreased fatty acid oxidation by 30% but did not affect muscle and heart function in mice. Metabolome profile analysis revealed increased levels of polyunsaturated fatty acids (PUFAs) and a global shift in fatty acid content from saturated to unsaturated lipids. In the risk area of ischemic hearts in TMLHE KO mouse, the OXPHOS-dependent respiration rate and OXPHOS coupling efficiency were fully preserved. Additionally, the decreased long-chain acylcarnitine synthesis rate in TMLHE KO mice prevented ischaemia-reperfusion-induced ROS production in cardiac mitochondria. This was associated with a 39% smaller infarct size in the TMLHE KO mice. The arrest of the acylcarnitine biosynthesis pathway in TMLHE KO mice prevents ischaemia-reperfusion-induced damage in cardiac mitochondria and decreases infarct size. These results confirm that the decreased accumulation of ROS-increasing fatty acid metabolism intermediates prevents mitochondrial and cardiac damage during ischaemia-reperfusion.


Subject(s)
Carnitine , Mitochondria, Heart , Animals , Carnitine/analogs & derivatives , Ischemia , Male , Mice , Mice, Knockout , Reperfusion
9.
Cells ; 10(11)2021 11 16.
Article in English | MEDLINE | ID: mdl-34831417

ABSTRACT

Wolfram syndrome (WS), also known as a DIDMOAD (diabetes insipidus, early-onset diabetes mellitus, optic nerve atrophy and deafness) is a rare autosomal disorder caused by mutations in the Wolframin1 (WFS1) gene. Previous studies have revealed that glucagon-like peptide-1 receptor agonist (GLP1 RA) are effective in delaying and restoring blood glucose control in WS animal models and patients. The GLP1 RA liraglutide has also been shown to have neuroprotective properties in aged WS rats. WS is an early-onset, chronic condition. Therefore, early diagnosis and lifelong pharmacological treatment is the best solution to control disease progression. Hence, the aim of this study was to evaluate the efficacy of the long-term liraglutide treatment on the progression of WS symptoms. For this purpose, 2-month-old WS rats were treated with liraglutide up to the age of 18 months and changes in diabetes markers, visual acuity, and hearing sensitivity were monitored over the course of the treatment period. We found that treatment with liraglutide delayed the onset of diabetes and protected against vision loss in a rat model of WS. Therefore, early diagnosis and prophylactic treatment with the liraglutide may also prove to be a promising treatment option for WS patients by increasing the quality of life.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hearing Loss, Sensorineural/drug therapy , Liraglutide/therapeutic use , Nerve Degeneration/drug therapy , Visual Pathways/pathology , Wolfram Syndrome/drug therapy , Animals , C-Peptide/metabolism , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor/metabolism , Hearing Loss, Sensorineural/complications , Liraglutide/pharmacology , Male , Nerve Degeneration/complications , Optic Nerve/drug effects , Optic Nerve/pathology , Optic Nerve/ultrastructure , Phenotype , Rats , Visual Pathways/drug effects , Wolfram Syndrome/complications
10.
Genes (Basel) ; 12(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34828323

ABSTRACT

Wolfram syndrome (WS) 1 is a rare monogenic neurodegenerative disorder caused by mutations in the gene encoding WFS1. Knowledge of the pathophysiology of WS is incomplete and to date, there is no treatment available. Here, we describe early deviations in the renin-angiotensin-aldosterone system (RAAS) and bradykinin pathway (kallikrein kinin system, KKS) observed in a rat model of WS (Wfs1 KO) and the modulative effect of glucagon-like peptide-1 receptor agonist liraglutide (LIR) and anti-epileptic drug valproate (VPA), which have been proven effective in delaying WS progression in WS animal models. We found that the expression of key receptors of the RAAS and KKS, Agtr2 and Bdkrb1, were drastically downregulated both in vitro and in vivo at an early stage in a rat model of WS. Moreover, in Wfs1, KO serum aldosterone levels were substantially decreased and bradykinin levels increased compared to WT animals. Neither treatment nor their combination affected the gene expression levels seen in the Wfs1 KO animals. However, all the treatments elevated serum aldosterone and decreased bradykinin in the Wfs1 KO rats, as well as increasing angiotensin II levels independent of genotype. Altogether, our results indicate that Wfs1 deficiency might disturb the normal functioning of RAAS and KKS and that LIR and VPA have the ability to modulate these systems.


Subject(s)
Calmodulin-Binding Proteins/genetics , Down-Regulation , Membrane Proteins/genetics , Receptor, Angiotensin, Type 2/genetics , Receptor, Bradykinin B1/genetics , Wolfram Syndrome/genetics , Aldosterone/blood , Animals , Cells, Cultured , Disease Models, Animal , Down-Regulation/drug effects , Gene Knockout Techniques , Liraglutide/pharmacology , Liraglutide/therapeutic use , Male , Rats , Renin-Angiotensin System/drug effects , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Wolfram Syndrome/blood , Wolfram Syndrome/drug therapy
11.
Biomedicines ; 9(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34572334

ABSTRACT

In the large GWAS studies, NEGR1 gene has been one of the most significant gene loci for body mass phenotype. The purpose of the current study was to clarify the role of NEGR1 in the maintenance of systemic metabolism, including glucose homeostasis, by using both male and female Negr1-/- mice receiving a standard or high fat diet (HFD). We found that 6 weeks of HFD leads to higher levels of blood glucose in Negr1-/- mice. In the glucose tolerance test, HFD induced phenotype difference only in male mice; Negr1-/- male mice displayed altered glucose tolerance, accompanied with upregulation of circulatory branched-chain amino acids (BCAA). The general metabolomic profile indicates that Negr1-/- mice are biased towards glyconeogenesis, fatty acid synthesis, and higher protein catabolism, all of which are amplified by HFD. Negr1 deficiency appears to induce alterations in the efficiency of energy storage; reduced food intake could be an attempt to compensate for the metabolic challenge present in the Negr1-/- males, particularly during the HFD exposure. Our results suggest that the presence of functional Negr1 allows male mice to consume more HFD and prevents the development of glucose intolerance, liver steatosis, and excessive weight gain.

12.
Brain Sci ; 11(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072341

ABSTRACT

C57BL/6NTac (Bl6) and 129S6/SvEvTac (129Sv) mice display different coping strategies in stressful conditions. Our aim was to evaluate biomarkers related to different adaptation strategies in the brain of male 129Sv and Bl6 mice. We focused on signaling pathways related to the dopamine (DA) system, N-methyl-D-aspartate (NMDA) receptor and epidermal growth factor (EGF) family, shown as the key players in behavioral adaptation. Mice from Bl6 and 129Sv lines were divided into either home cage controls (HCC group) or exposed to repeated motility testing and treated with saline for 11 days (RMT group). Distinct stress responses were reflected in severe body weight loss in 129Sv and the increased exploratory behavior in Bl6 mice. Besides that, amphetamine caused significantly stronger motor stimulation in Bl6. Together with the results from gene expression (particularly Maob), this study supports higher baseline activity of DA system in Bl6. Interestingly, the adaptation is reflected with opposite changes of DA markers in dorsal and ventral striatum. In forebrain, stress increased the gene expressions of Egf-Erbb1 and Nrg1/Nrg2-Erbb4 pathways more clearly in 129Sv, whereas the corresponding proteins were significantly elevated in Bl6. We suggest that not only inhibited activity of the DA system, but also reduced activity of EGF family and NMDA receptor signaling underlies higher susceptibility to stress in 129Sv. Altogether, this study underlines the better suitability of 129Sv for modelling neuropsychiatric disorders than Bl6.

13.
Virology ; 561: 65-68, 2021 09.
Article in English | MEDLINE | ID: mdl-34157565

ABSTRACT

The global COVID-19 pandemic caused by SARS-CoV-2 predominantly affects the elderly. Differential expression of SARS-CoV-2 entry genes may underlie the variable susceptibility in different patient groups. Here, we examined the gene expression of key SARS-CoV-2 entry factors in mucosal biopsies to delineate the roles of age and existing chronic airway disease. A significant inverse correlation between ACE2 and age and a downregulation of NRP1 in patients with airway disease were noted. These results indicate that the interplay between various factors may influence susceptibility and the disease course.


Subject(s)
COVID-19/genetics , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Nasal Mucosa/metabolism , Nasal Mucosa/virology , SARS-CoV-2/physiology , Adolescent , Adult , Age Factors , Aged , Biomarkers , Child , Child, Preschool , Comorbidity , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Virus Internalization , Young Adult
14.
Sci Rep ; 11(1): 2275, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500541

ABSTRACT

Wolfram syndrome (WS) is a monogenic progressive neurodegenerative disease and is characterized by various neurological symptoms, such as optic nerve atrophy, loss of vision, cognitive decline, memory impairment, and learning difficulties. GLP1 receptor agonist liraglutide and BDNF mimetic 7,8-dihydroxyflavone (7,8-DHF) have had protective effect to visual pathway and to learning and memory in different rat models of neurodegenerative disorders. Although synergistic co-treatment effect has not been reported before and therefore the aim of the current study was to investigate liraglutide, 7,8-DHF and most importantly for the first time their co-treatment effect on degenerative processes in WS rat model. We took 9 months old WS rats and their wild-type (WT) control animals and treated them daily with liraglutide, 7,8-DHF or with the combination of liraglutide and 7,8-DHF up to the age of 12.5 months (n = 47, 5-8 per group). We found that liraglutide, 7,8-DHF and their co-treatment all prevented lateral ventricle enlargement, improved learning in Morris Water maze, reduced neuronal inflammation, delayed the progression of optic nerve atrophy, had remyelinating effect on optic nerve and thereby improved visual acuity in WS rats compared to WT controls. Thus, the use of the liraglutide, 7,8-DHF and their co-treatment could potentially be used as a therapeutic intervention to induce neuroprotection or even neuronal regeneration.


Subject(s)
Blindness/drug therapy , Blindness/prevention & control , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Flavones/therapeutic use , Liraglutide/therapeutic use , Wolfram Syndrome/drug therapy , Animals , Blindness/blood , Blindness/physiopathology , Blood Glucose/metabolism , Body Weight , Calmodulin-Binding Proteins/deficiency , Calmodulin-Binding Proteins/metabolism , Cognitive Dysfunction/blood , Disease Models, Animal , Disease Progression , Drug Therapy, Combination , Fasting/blood , Flavones/pharmacology , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hyperglycemia/pathology , Learning/drug effects , Liraglutide/pharmacology , Male , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Nerve Degeneration/complications , Nerve Degeneration/pathology , Optic Nerve/drug effects , Optic Nerve/pathology , Optic Nerve/physiopathology , Optic Nerve/ultrastructure , Rats , Remyelination , Visual Acuity/drug effects , Wolfram Syndrome/blood
15.
Gen Physiol Biophys ; 39(5): 499-503, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33084603

ABSTRACT

In previously introduced rat model of Wolfram syndrome, we have shown that in cardiac myocytes lacking functional wolframin protein the calcium transients and contractile response are significantly changed. Therefore, in this model, we evaluated protein and mRNA expression levels of following proteins involved in cardiac myocytes calcium homeostasis: the ryanodine receptor type 2, calsequestrin type 2, the junctophilin type 2 and plasmalemmal sodium-calcium exchanger type 1 (NCX1). For NCX1 we detected a significant decrease in expression both on protein and mRNA level. Thus, beyond its impact on endoplasmic reticulum stress, calcium, and mitochondria, wolframin influences processes in the myocyte plasma membrane.


Subject(s)
Calmodulin-Binding Proteins/genetics , Cell Membrane , Membrane Proteins/genetics , Sodium-Calcium Exchanger/genetics , Wolfram Syndrome , Animals , Calcium/metabolism , Cell Membrane/metabolism , Myocytes, Cardiac , Rats
16.
Sci Rep ; 9(1): 15742, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673100

ABSTRACT

Wolfram syndrome (WS) is a rare neurodegenerative disorder that is mainly characterized by diabetes mellitus, optic nerve atrophy, deafness, and progressive brainstem degeneration. Treatment with GLP-1 receptor agonists has shown a promising anti-diabetic effect in WS treatment in both animal models and in human patients. Since previous research has tended to focus on investigation of the WS first symptom, diabetes mellitus, the aim of the present study was to examine liraglutide effect on WS-associated neurodegeneration. We took 9-month-old Wfs1 knock-out (KO) animals that already had developed glucose intolerance and treated them with liraglutide for 6 months. Our research results indicate that 6-month liraglutide treatment reduced neuroinflammation and ameliorated endoplasmic reticulum (ER) stress in the inferior olive of the aged WS rat model. Liraglutide treatment also protected retinal ganglion cells from cell death and optic nerve axons from degeneration. According to this, the results of the present study provide novel insight that GLP-1 receptor agonist liraglutide has a neuroprotective effect in the WS rat model.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Liraglutide/therapeutic use , Neuroprotective Agents/therapeutic use , Wolfram Syndrome/drug therapy , Animals , Apoptosis/drug effects , Calmodulin-Binding Proteins/deficiency , Calmodulin-Binding Proteins/genetics , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Glucose Tolerance Test , Hyperglycemia/pathology , Hyperglycemia/prevention & control , Liraglutide/pharmacology , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Neurons/physiology , Neuroprotective Agents/pharmacology , Optic Nerve/metabolism , Rats , Rats, Transgenic , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism , Wolfram Syndrome/metabolism , Wolfram Syndrome/pathology
17.
Front Physiol ; 10: 172, 2019.
Article in English | MEDLINE | ID: mdl-30930784

ABSTRACT

Wolframin (Wfs1) is a membrane protein of the sarco/endoplasmic reticulum. Wfs1 mutations are responsible for the Wolfram syndrome, characterized by diabetic and neurological symptoms. Although Wfs1 is expressed in cardiac muscle, its role in this tissue is not clear. We have characterized the effect of invalidation of Wfs1 on calcium signaling-related processes in isolated ventricular myocytes of exon5-Wfs1 deficient rats (Wfs1-e5/-e5) before the onset of overt disease. Calcium transients and contraction were measured in field-stimulated isolated myocytes using confocal microscopy with calcium indicator fluo-3 AM and sarcomere length detection. Calcium currents and their calcium release-dependent inactivation were characterized in whole-cell patch-clamp experiments. At 4 months, Wfs1-e5/-e5 animals were euglycemic, and echocardiographic examination revealed fully compensated cardiac function. In field-stimulated isolated ventricular myocytes, both the amplitude and the duration of contraction of Wfs1-e5/-e5 animals were elevated relative to control Wfs1+/+ littermates. Increased contractility of myocytes resulted largely from prolonged cytosolic calcium transients. Neither the amplitude of calcium currents nor their voltage dependence of activation differed between the two groups. Calcium currents in Wfs1-e5/-e5 myocytes showed a larger extent of inactivation by short voltage prepulses applied to selectively induce calcium release-dependent inactivation of calcium current. Neither the calcium content of the sarcoplasmic reticulum, measured by application of 20 mmol/l caffeine, nor the expression of SERCA2, determined from Western blots, differed significantly in myocytes of Wfs1-e5/-e5 animals compared to control ones. These experiments point to increased duration of calcium release in ventricular myocytes of Wfs1-e5/-e5 animals. We speculate that the lack of functional wolframin might cause changes leading to upregulation of RyR2 channels resulting in prolongation of channel openings and/or a delay in termination of calcium release.

18.
Can J Diabetes ; 43(2): 115-120, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30266217

ABSTRACT

OBJECTIVES: Similar to patients with Wolfram syndrome and to heterozygous Wolframin1 (Wfs1) mutation carriers, Wfs1-deficient mice exhibit impaired glucose tolerance and lower plasma insulin levels. Muscarinic receptor 3 agonists have previously been shown to potentiate glucose-stimulated insulin secretion. Therefore, the aim of this study was to investigate insulin-secretion dynamics in Wfs1-deficient mice and evaluate carbachol, muscarinic agonist and the ability to ameliorate the insulin secretion deficits caused by the Wfs1 mutation. METHODS: Wild-type Wfs1 heterozygous and Wfs1 mutant mice were used. Blood glucose was measured after glucose and carbachol administration. Insulin secretion was measured from serum using ELISA. RESULTS: Glucose administration causes hyperglycemia in Wfs1-deficient mice due to decreased insulin secretion. This deficit is abolished by administration of the muscarinic agonist carbachol. CONCLUSIONS: Activation of the muscarinic pathway to potentiate insulin secretion may present a target to manage diabetes resulting from Wfs1 deficiency.


Subject(s)
Carbachol/pharmacology , Insulin Secretion/drug effects , Membrane Proteins/deficiency , Muscarinic Agonists/pharmacology , Animals , Blood Glucose , Enzyme-Linked Immunosorbent Assay , Glucose/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout
19.
Sci Rep ; 8(1): 10183, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976929

ABSTRACT

Wolfram syndrome (WS) is a rare autosomal recessive disorder caused by mutations in the WFS1 (Wolframin1) gene. The syndrome first manifests as diabetes mellitus, followed by optic nerve atrophy, deafness, and neurodegeneration. The underlying mechanism is believed to be a dysregulation of endoplasmic reticulum (ER) stress response, which ultimately leads to cellular death. Treatment with glucagon-like peptide-1 (GLP-1) receptor agonists has been shown to normalize ER stress response in several in vitro and in vivo models. Early chronic intervention with the GLP-1 receptor agonist liraglutide starting before the onset of metabolic symptoms prevented the development of glucose intolerance, improved insulin and glucagon secretion control, reduced ER stress and inflammation in Langerhans islets in Wfs1 mutant rats. Thus, treatment with GLP-1 receptor agonists might be a promising strategy as a preventive treatment for human WS patients.


Subject(s)
Glucose Intolerance/prevention & control , Incretins/administration & dosage , Liraglutide/administration & dosage , Wolfram Syndrome/complications , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Calmodulin-Binding Proteins/genetics , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Gene Knockout Techniques , Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose Intolerance/blood , Glucose Intolerance/diagnosis , Glucose Intolerance/etiology , Glucose Tolerance Test , Humans , Injections, Subcutaneous , Insulin/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Membrane Proteins/genetics , Rats , Rats, Transgenic , Treatment Outcome , Wolfram Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...