Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1234925, 2023.
Article in English | MEDLINE | ID: mdl-37900147

ABSTRACT

Aim: Wolfram Syndrome (WS) is a rare condition caused by mutations in Wfs1, with a poor prognosis and no cure. Mono-agonists targeting the incretin glucagon-like-peptide 1 (GLP-1) have demonstrated disease-modifying potential in pre-clinical and clinical settings. Dual agonists that target GLP-1 and glucose-dependent insulinotropic polypeptide (GIP-1) are reportedly more efficacious; hence, we evaluated the therapeutic potential of dual incretin agonism in a loss-of-function rat model of WS. Methods: Eight-month-old Wfs1 knock-out (KO) and wild-type control rats were continuously treated with either the dual agonist DA-CH5 or saline for four months. Glycemic profile, visual acuity and hearing sensitivity were longitudinally monitored pre-treatment, and then at 10.5 and 12 months. Pancreata and retina were harvested for immunohistological analysis. Results: DA-CH5 therapy reversed glucose intolerance in KO rats and provided lasting anti-diabetogenic protection. Treatment also reversed intra-islet alterations, including reduced endocrine islet area and ß-cell density, indicating its regenerative potential. Although no rescue effect was noted for hearing loss, visual acuity and retinal ganglion cell density were better preserved in DA-CH5-treated rats. Conclusion: We present preclinical evidence for the pleiotropic therapeutic effects of long-term dual incretin agonist treatment; effects were seen despite treatment beginning after symptom-onset, indicating reversal of disease progression. Dual incretins represent a promising therapeutic avenue for WS patients.


Subject(s)
Insulin-Secreting Cells , Wolfram Syndrome , Humans , Rats , Animals , Infant , Incretins/pharmacology , Wolfram Syndrome/drug therapy , Glucagon-Like Peptide 1/pharmacology , Gastric Inhibitory Polypeptide
2.
PLoS One ; 17(6): e0268806, 2022.
Article in English | MEDLINE | ID: mdl-35687549

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2-specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum immediately before calving. Here, we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks the interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persisted on the nasal mucosa for at least 4 hours, as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for rapid and versatile adaptation for preparing prophylactic treatments against other diseases using the defined characteristics of antibody movement into the colostrum.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cattle , Colostrum/metabolism , Female , Humans , Pregnancy , Spike Glycoprotein, Coronavirus
3.
Cells ; 10(11)2021 11 16.
Article in English | MEDLINE | ID: mdl-34831417

ABSTRACT

Wolfram syndrome (WS), also known as a DIDMOAD (diabetes insipidus, early-onset diabetes mellitus, optic nerve atrophy and deafness) is a rare autosomal disorder caused by mutations in the Wolframin1 (WFS1) gene. Previous studies have revealed that glucagon-like peptide-1 receptor agonist (GLP1 RA) are effective in delaying and restoring blood glucose control in WS animal models and patients. The GLP1 RA liraglutide has also been shown to have neuroprotective properties in aged WS rats. WS is an early-onset, chronic condition. Therefore, early diagnosis and lifelong pharmacological treatment is the best solution to control disease progression. Hence, the aim of this study was to evaluate the efficacy of the long-term liraglutide treatment on the progression of WS symptoms. For this purpose, 2-month-old WS rats were treated with liraglutide up to the age of 18 months and changes in diabetes markers, visual acuity, and hearing sensitivity were monitored over the course of the treatment period. We found that treatment with liraglutide delayed the onset of diabetes and protected against vision loss in a rat model of WS. Therefore, early diagnosis and prophylactic treatment with the liraglutide may also prove to be a promising treatment option for WS patients by increasing the quality of life.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hearing Loss, Sensorineural/drug therapy , Liraglutide/therapeutic use , Nerve Degeneration/drug therapy , Visual Pathways/pathology , Wolfram Syndrome/drug therapy , Animals , C-Peptide/metabolism , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor/metabolism , Hearing Loss, Sensorineural/complications , Liraglutide/pharmacology , Male , Nerve Degeneration/complications , Optic Nerve/drug effects , Optic Nerve/pathology , Optic Nerve/ultrastructure , Phenotype , Rats , Visual Pathways/drug effects , Wolfram Syndrome/complications
4.
Virology ; 561: 65-68, 2021 09.
Article in English | MEDLINE | ID: mdl-34157565

ABSTRACT

The global COVID-19 pandemic caused by SARS-CoV-2 predominantly affects the elderly. Differential expression of SARS-CoV-2 entry genes may underlie the variable susceptibility in different patient groups. Here, we examined the gene expression of key SARS-CoV-2 entry factors in mucosal biopsies to delineate the roles of age and existing chronic airway disease. A significant inverse correlation between ACE2 and age and a downregulation of NRP1 in patients with airway disease were noted. These results indicate that the interplay between various factors may influence susceptibility and the disease course.


Subject(s)
COVID-19/genetics , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Nasal Mucosa/metabolism , Nasal Mucosa/virology , SARS-CoV-2/physiology , Adolescent , Adult , Age Factors , Aged , Biomarkers , Child , Child, Preschool , Comorbidity , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Virus Internalization , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...