Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 35(3): 518-526, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38308645

ABSTRACT

Aryl hydrocarbon receptor (AhR) is a transcription factor that regulates gene expression upon ligand activation, enabling microbiota-dependent induction, training, and function of the host immune system. A spectrum of metabolites, encompassing indole and tryptophan derivatives, have been recognized as activators. This work introduces an integrated, mass spectrometry-centric workflow that employs a bioassay-guided, fractionation-based methodology for the identification of AhR activators derived from human bacterial isolates. By leveraging the workflow efficiency, the complexities inherent in metabolomics profiling are significantly reduced, paving the way for an in-depth and focused mass spectrometry analysis of bioactive fractions isolated from bacterial culture supernatants. Validation of AhR activator candidates used multiple criteria─MS/MS of the synthetic reference compound, bioassay of AhR activity, and elution time confirmation using a C-13 isotopic reference─and was demonstrated for N-formylkynurenine (NFK). The workflow reported provides a roadmap update for improved efficiency of identifying bioactive metabolites using mass spectrometry-based metabolomics. Mass spectrometry datasets are accessible at the National Metabolomics Data Repository (PR001479, Project DOI: 10.21228/M8JM7Q).


Subject(s)
Receptors, Aryl Hydrocarbon , Tandem Mass Spectrometry , Humans , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
2.
Oxid Med Cell Longev ; 2022: 9518592, 2022.
Article in English | MEDLINE | ID: mdl-36193076

ABSTRACT

Aims: Studies have linked severe hyperoxia, or prolonged exposure to very high oxygen levels, with worse clinical outcomes. This study investigated the role of epidermal growth factor receptor (EGFR) in hyperoxia-induced lung injury at very high oxygen levels (>95%). Results: Effects of severe hyperoxia (100% oxygen) were studied in mice with genetically inhibited EGFR and wild-type littermates. Despite the established role of EGFR in lung repair, EGFR inhibition led to improved survival and reduced acute lung injury, which prompted an investigation into this protective mechanism. Endothelial EGFR genetic knockout did not confer protection. EGFR inhibition led to decreased levels of cleaved caspase-3 and poly (ADP-ribosyl) polymerase (PARP) and decreased terminal dUTP nick end labeling- (TUNEL-) positive staining in alveolar epithelial cells and reduced ERK activation, which suggested reduced apoptosis in vivo. EGFR inhibition decreased hyperoxia (95%)-induced apoptosis and ERK in murine alveolar epithelial cells in vitro, and CRISPR-mediated EGFR deletion reduced hyperoxia-induced apoptosis and ERK in human alveolar epithelial cells in vitro. Innovation. This work defines a protective role of EGFR inhibition to decrease apoptosis in lung injury induced by 100% oxygen. This further characterizes the complex role of EGFR in acute lung injury and outlines a novel hyperoxia-induced cell death pathway that warrants further study. Conclusion: In conditions of severe hyperoxia (>95% for >24 h), EGFR inhibition led to improved survival, decreased lung injury, and reduced cell death. These findings further elucidate the complex role of EGFR in acute lung injury.


Subject(s)
Acute Lung Injury , Hyperoxia , Lung Injury , Acute Lung Injury/metabolism , Adenosine Diphosphate/pharmacology , Animals , Apoptosis , Caspase 3/metabolism , ErbB Receptors/metabolism , Humans , Hyperoxia/complications , Hyperoxia/metabolism , Lung/metabolism , Lung Injury/etiology , Lung Injury/metabolism , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
3.
Clin Transl Immunology ; 11(10): e1421, 2022.
Article in English | MEDLINE | ID: mdl-36285327

ABSTRACT

Objectives: Despite advances in antibody treatments and vaccines, COVID-19 caused by SARS-CoV-2 infection remains a major health problem resulting in excessive morbidity and mortality and the emergence of new variants has reduced the effectiveness of current vaccines. Methods: Here, as a proof-of-concept, we engineered primary CD8 T cells to express SARS-CoV-2 Spike protein-specific CARs, using the extracellular region of ACE2 and demonstrated their highly specific and potent cytotoxicity towards Spike-expressing target cells. To improve on this concept as a potential therapeutic, we developed a bispecific T cell engager combining ACE2 with an anti-CD3 scFv (ACE2-Bite) to target infected cells and the virus. Results: As in CAR-T cell approach, ACE2-Bite endowed cytotoxic cells to selectively kill Spike-expressing targets. Furthermore, ACE2-Bite neutralized the pseudoviruses of SARS-CoV, SARS-CoV-2 wild-type, and variants including Delta and Omicron, as a decoy protein. Remarkably, ACE2-Bite molecule showed a higher binding and neutralization affinity to Delta and Omicron variants compared to SARS-CoV-2 wild-type Spike proteins. Conclusion: In conclusion, these results suggest the potential of this approach as a variant-proof, therapeutic strategy for future SARS-CoV-2 variants, employing both humoral and cellular arms of the adaptive immune response.

4.
J Immunol ; 209(8): 1523-1531, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36165183

ABSTRACT

Engineering immune cells with chimeric Ag receptors (CARs) is a promising technology in cancer immunotherapy. Besides classical cytotoxic CD8+ T cells, innate cell types such as NK cells have also been used to generate CAR-T or CAR-NK cells. In this study, we devised an approach to program a nonclassical cytotoxic T cell subset called mucosal-associated invariant T (MAIT) cells into effective CAR-T cells against B cell lymphoma and breast cancer cells. Accordingly, we expressed anti-CD19 and anti-Her2 CARs in activated primary human MAIT cells and CD8+ T cells, expanded them in vitro, and compared their cytotoxicity against tumor cell targets. We show upon activation through CARs that CAR-MAIT cells exhibit high levels of cytotoxicity toward target cells, comparable to CD8+ CAR-T cells, but interestingly expressed lower levels of IFN-γ than conventional CAR CD8+ T cells. Additionally, in the presence of vitamin B2 metabolite 5-ARU (5-amino-4-d-ribitylaminouracil dihydrochloride), which is a conserved compound that activates MAIT cells through MHC class I-related (MR1) protein, MAIT cells killed MR1-expressing target breast cancer and B cell lymphoma cell lines in a dose-dependent manner. Thus, MAIT cells can be genetically edited as CAR-T cells or mobilized and expanded by MR1 ligands as an off-the-shelf novel approach to cell-based cancer immunotherapy strategies while being comparable to conventional methods in effectivity.


Subject(s)
Breast Neoplasms , Lymphoma, B-Cell , Mucosal-Associated Invariant T Cells , Receptors, Chimeric Antigen , Antigens/metabolism , Breast Neoplasms/therapy , CD8-Positive T-Lymphocytes , Female , Histocompatibility Antigens Class I , Humans , Immunotherapy , Minor Histocompatibility Antigens/genetics , Receptors, Antigen, T-Cell , Vitamins
5.
Commun Biol ; 4(1): 129, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514825

ABSTRACT

Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Adult , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , Convalescence , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Female , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Immune Sera/chemistry , Immunity, Humoral , Lentivirus/genetics , Lentivirus/immunology , Male , Middle Aged , Neutralization Tests , Phosphoproteins/chemistry , Phosphoproteins/immunology , Phosphoproteins/metabolism , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
6.
medRxiv ; 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32676617

ABSTRACT

Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n=115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.

7.
Nature ; 583(7816): 447-452, 2020 07.
Article in English | MEDLINE | ID: mdl-32499651

ABSTRACT

Genetic variations underlying susceptibility to complex autoimmune and allergic diseases are concentrated within noncoding regulatory elements termed enhancers1. The functions of a large majority of disease-associated enhancers are unknown, in part owing to their distance from the genes they regulate, a lack of understanding of the cell types in which they operate, and our inability to recapitulate the biology of immune diseases in vitro. Here, using shared synteny to guide loss-of-function analysis of homologues of human enhancers in mice, we show that the prominent autoimmune and allergic disease risk locus at chromosome 11q13.52-7 contains a distal enhancer that is functional in CD4+ regulatory T (Treg) cells and required for Treg-mediated suppression of colitis. The enhancer recruits the transcription factors STAT5 and NF-κB to mediate signal-driven expression of Lrrc32, which encodes the protein glycoprotein A repetitions predominant (GARP). Whereas disruption of the Lrrc32 gene results in early lethality, mice lacking the enhancer are viable but lack GARP expression in Foxp3+ Treg cells, which are unable to control colitis in a cell-transfer model of the disease. In human Treg cells, the enhancer forms conformational interactions with the promoter of LRRC32 and enhancer risk variants are associated with reduced histone acetylation and GARP expression. Finally, functional fine-mapping of 11q13.5 using CRISPR-activation (CRISPRa) identifies a CRISPRa-responsive element in the vicinity of risk variant rs11236797 capable of driving GARP expression. These findings provide a mechanistic basis for association of the 11q13.5 risk locus with immune-mediated diseases and identify GARP as a potential target in their therapy.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Colitis/genetics , Colitis/immunology , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease/genetics , T-Lymphocytes, Regulatory/immunology , Acetylation , Alleles , Animals , Chromosomes, Mammalian/genetics , Female , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Synteny/genetics
8.
Mol Cell Biol ; 40(12)2020 05 28.
Article in English | MEDLINE | ID: mdl-32229578

ABSTRACT

The LMO2/LDB1 macromolecular complex is critical in hematopoietic stem and progenitor cell specification and in the development of acute leukemia. This complex is comprised of core subunits of LMO2 and LDB1 as well as single-stranded DNA-binding protein (SSBP) cofactors and DNA-binding basic helix-loop-helix (bHLH) and GATA transcription factors. We analyzed the steady-state abundance and kinetic stability of LMO2 and its partners via Halo protein tagging in conjunction with variant proteins deficient in binding their respective direct protein partners. We discovered a hierarchy of protein stabilities (with half-lives in descending order) as follows: LDB1 > SSBP > LMO2 > TAL1. Importantly, LDB1 is a remarkably stable protein that confers enhanced stability upon direct and indirect partners, thereby nucleating the formation of the multisubunit protein complex. The data imply that free subunits are more rapidly degraded than those incorporated within the LMO2/LDB1 complex. Our studies provided significant insights into LMO2/LDB1 macromolecular protein complex assembly and stability, which has implications for understanding its role in blood cell formation and for therapeutically targeting this complex in human leukemias.


Subject(s)
DNA-Binding Proteins/metabolism , LIM Domain Proteins/metabolism , Leukemia/metabolism , Oncogene Proteins/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , HEK293 Cells , Humans , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Stability , Proteolysis , Proto-Oncogene Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Ubiquitin/metabolism
9.
Mucosal Immunol ; 11(6): 1591-1605, 2018 11.
Article in English | MEDLINE | ID: mdl-30115998

ABSTRACT

Human mucosal-associated invariant T (MAIT) cell receptors (TCRs) recognize bacterial riboflavin pathway metabolites through the MHC class 1-related molecule MR1. However, it is unclear whether MAIT cells discriminate between many species of the human microbiota. To address this, we developed an in vitro functional assay through human T cells engineered for MAIT-TCRs (eMAIT-TCRs) stimulated by MR1-expressing antigen-presenting cells (APCs). We then screened 47 microbiota-associated bacterial species from different phyla for their eMAIT-TCR stimulatory capacities. Only bacterial species that encoded the riboflavin pathway were stimulatory for MAIT-TCRs. Most species that were high stimulators belonged to Bacteroidetes and Proteobacteria phyla, whereas low/non-stimulator species were primarily Actinobacteria or Firmicutes. Activation of MAIT cells by high- vs low-stimulating bacteria also correlated with the level of riboflavin they secreted or after bacterial infection of macrophages. Remarkably, we found that human T-cell subsets can also present riboflavin metabolites to MAIT cells in a MR1-restricted fashion. This T-T cell-mediated signaling also induced IFNγ, TNF and granzyme B from MAIT cells, albeit at lower level than professional APC. These findings suggest that MAIT cells can discriminate and categorize complex human microbiota through computation of TCR signals depending on antigen load and presenting cells, and fine-tune their functional responses.


Subject(s)
Bacteroidetes/immunology , Macrophages/immunology , Microbiota/immunology , Mucosal-Associated Invariant T Cells/immunology , Proteobacteria/immunology , Riboflavin/metabolism , Antigen Presentation , Antigens, Bacterial/immunology , Cells, Cultured , Genetic Engineering , Histocompatibility Antigens Class I/metabolism , Humans , Interferon-gamma/metabolism , Lymphocyte Activation , Macrophages/microbiology , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/microbiology , Receptors, Antigen, T-Cell/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
10.
J Immunol ; 201(5): 1586-1598, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30021769

ABSTRACT

Developing precise and efficient gene editing approaches using CRISPR in primary human T cell subsets would provide an effective tool in decoding their functions. Toward this goal, we used lentiviral CRISPR/Cas9 systems to transduce primary human T cells to stably express the Cas9 gene and guide RNAs that targeted either coding or noncoding regions of genes of interest. We showed that multiple genes (CD4, CD45, CD95) could be simultaneously and stably deleted in naive, memory, effector, or regulatory T cell (Treg) subsets at very high efficiency. Additionally, nuclease-deficient Cas9, associated with a transcriptional activator or repressor, can downregulate or increase expression of genes in T cells. For example, expression of glycoprotein A repetitions predominant (GARP), a gene that is normally and exclusively expressed on activated Tregs, could be induced on non-Treg effector T cells by nuclease-deficient Cas9 fused to transcriptional activators. Further analysis determined that this approach could be used in mapping promoter sequences involved in gene transcription. Through this CRISPR/Cas9-mediated genetic editing we also demonstrated the feasibility of human T cell functional analysis in several examples: 1) CD95 deletion inhibited T cell apoptosis upon reactivation; 2) deletion of ORAI1, a Ca2+ release-activated channel, abolished Ca2+ influx and cytokine secretion, mimicking natural genetic mutations in immune-deficient patients; and 3) transcriptional activation of CD25 or CD127 expression enhanced cytokine signaling by IL-2 or IL-7, respectively. Taken together, application of the CRISPR toolbox to human T cell subsets has important implications for decoding the mechanisms of their functional outputs.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , T-Lymphocytes, Regulatory/immunology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...