Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; 35(22): 4753-4756, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32013559

ABSTRACT

This work reports for the first time the in vitro anti-oxidant (towards DPPH, ABTS, copper and iron), enzymatic inhibitory (on AChE, BuChE, α-glucosidase, α-amylase and tyrosinase), cytotoxicity (towards HepG2 and HEK 293 cells), and metabolomics (by HPLC-MS) of extracts from organs of Malcolmia littorea (L.) R.Br. Extracts were constituted mainly by phenolic acids and flavonoids, and main compounds were salicylic acid and luteolin-7-O-glucoside. Samples showed reduced radical scavenging and metal chelating capacity, and only the methanol extracts reduced iron. The root's ethanol and methanol extracts, and the aerial organ's ethanol extract exhibited the highest AChE inhibition. The root's ethanol extract displayed dual anti-cholinesterase activity. Samples showed a low capacity to inhibit α-amylase, but a high α-glucosidase inhibition was obtained with the root's and flower's ethanol extracts, and flower's methanol extract. Overall, samples displayed a high inhibition against tyrosinase, reduced HepG2 cellular viability and were less toxic towards HEK 293 cells.


Subject(s)
Antioxidants , Brassicaceae , Antioxidants/pharmacology , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Phytochemicals , Plant Extracts/pharmacology , Salt-Tolerant Plants
2.
Bioprocess Biosyst Eng ; 43(5): 785-796, 2020 May.
Article in English | MEDLINE | ID: mdl-31894389

ABSTRACT

In recent years, there has been increasing consumer interest in carotenoids, particularly of marine sustainable origin with applications in the food, cosmeceutical, nutritional supplement and pharmaceutical industries. For instance, microalgae belonging to the genus Tetraselmis are known for their biotechnologically relevant carotenoid profile. The recently isolated marine microalgal strain Tetraselmis sp. CTP4 is a fast-growing, robust industrial strain, which has successfully been produced in 100-m3 photobioreactors. However, there are no reports on total carotenoid contents from this strain belonging to T. striata/convolutae clade. Although there are several reports on extraction methods targeting chlorophytes, extraction depends on the strength of cell coverings, solvent polarity and the nature of the targeted carotenoids. Therefore, this article evaluates different extraction methods targeting Tetraselmis sp. CTP4, a strain known to contain a mechanically resistant theca. Here, we propose a factorial experimental design to compare extraction of total carotenoids from wet and freeze-dried microalgal biomass using four different solvents (acetone, ethanol, methanol or tetrahydrofuran) in combination with two types of mechanical cell disruption (glass beads or dispersion). The extraction efficiency of the methods was assessed by pigment contents and profiles present in the extracts. Extraction of wet biomass by means of glass bead-assisted cell disruption using tetrahydrofuran yielded the highest amounts of lutein and ß-carotene (622 ± 40 and 618 ± 32 µg g-1 DW, respectively). Although acetone was slightly less efficient than tetrahydrofuran, it is preferable due to its lower costs and toxicity.


Subject(s)
Chlorophyta/chemistry , Lutein , Microalgae/chemistry , beta Carotene , Lutein/chemistry , Lutein/isolation & purification , Microalgae/isolation & purification , beta Carotene/chemistry , beta Carotene/isolation & purification
3.
Plants (Basel) ; 9(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979182

ABSTRACT

Cakile maritima Scop. (sea rocket) is an edible halophyte plant with several ethnomedicinal uses. This work reports the chemical profile and bioactivities of food grade extracts from sea rocket organs. Toxicity was determined on mammalian cells, and phenolic profiling and the quantitation of the main metabolites were made by high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Enzymatic inhibition was determined towards acetyl- and butyrylcholinesterase (AChE, BuChE), α-glucosidase, α-amylase, and tyrosinase. Docking studies were performed to tyrosinase, on the major metabolites, and samples were tested for antioxidant properties. Extracts were not toxic, were constituted mainly by flavonoids, and some compounds (roseoside and oleuropein) are here described for the first time in the species. The aerial organs' ethanol extract had relevant activity towards 2,2-diphenyl-1-picrylhydrazyl [DPPH, half maximal inhibitory concentration (IC50) = 0.59 mg/mL], and ferric-reducing activity power (FRAP, IC50 = 0.99 mg/mL). All samples were more active towards AChE than on BuChE. The ethanol fruits' extract inhibited α-glucosidase [2.19 mmol of equivalent of acarbose (ACAE)/g]. Samples were active against tyrosinase, especially the aerial organs' ethanol extracts [25.9 mg of equivalent of kojic acid (KAE)/g]. Quercetin and kaempferol glycosides fit well into the enzymatic pocket of tyrosinase. Our results suggest sea rocket as a candidate to be further explored as a source of bioactive products.

4.
Data Brief ; 25: 104357, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31516926

ABSTRACT

This data article includes data and analyses on the effect of different agronomic techniques on the production of Polygonum maritimum L. (sea knotgrass), namely different salinity irrigation treatments (0, 100, 200, 300 and 600 mM of NaCl) and a multi-harvest regime, and their relation with the chemical profile (ultra-high-resolution mass spectrometry - UHRMS), in vitro antioxidant [radical-scavenging activity (RSA) of DPPH and ABTS, copper chelating activity and ferric reducing antioxidant power] and anti-inflammatory (nitric oxide reduction on lipopolysaccharide-stimulated macrophages) activities. For further interpretation of the data presented in this work, please see the related research article "The irrigation salinity and harvesting affect the growth, chemical profile and biological activities of Polygonum maritimum L." (Rodrigues et al., 2019).

SELECTION OF CITATIONS
SEARCH DETAIL
...