Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Neurobiol Aging ; 140: 41-59, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723422

ABSTRACT

Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear. Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for in vivo studies.


Subject(s)
Aging , Macular Degeneration , Retinal Pigment Epithelium , Sex Characteristics , Animals , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Female , Male , Aging/genetics , Aging/physiology , Aging/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Transcriptome , Disease Models, Animal , Gene Expression , Inflammation , Mice , Mice, Inbred C57BL
3.
Immunometabolism (Cobham) ; 5(2): e00022, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128292

ABSTRACT

This review summarizes the cellular and molecular underpinnings of autoimmune demyelinating optic neuritis (ADON), a common sequela of multiple sclerosis and other demyelinating diseases. We further present nutritional interventions tested for people with multiple sclerosis focusing on strategies that have shown efficacy or associations with disease course and clinical outcomes. We then close by discuss the potential dietary guidance for preventing and/or ameliorating ADON.

4.
Front Neurol ; 14: 1113954, 2023.
Article in English | MEDLINE | ID: mdl-36937529

ABSTRACT

Introduction: Five to eight percent of the world population currently suffers from at least one autoimmune disorder. Despite multiple immune modulatory therapies for autoimmune demyelinating diseases of the central nervous system, these treatments can be limiting for subsets of patients due to adverse effects and expense. To circumvent these barriers, we investigated a nutritional intervention in mice undergoing experimental autoimmune encephalomyelitis (EAE), a model of autoimmune-mediated demyelination that induces visual and motor pathologies similar to those experienced by people with multiple sclerosis (MS). Methods: EAE was induced in female and male mice and the impact of limiting dietary carbohydrates by feeding a ketogenic diet (KD) enriched in medium chain triglycerides (MCTs), alpha-linolenic acid (an omega-3 fatty acid), and fiber was evaluated in both a preventive regimen (prior to immunization with MOG antigen) and an interventional regimen (following the onset of symptoms). Motor scores were assigned daily and visual acuity was measured using optokinetic tracking. Immunohistochemical analyses of optic nerves were done to assess inflammatory infiltrates and myelination status. Fatty acid and cytokine profiling from blood were performed to evaluate systemic inflammatory status. Results: The KD was efficacious when fed as a preventive regimen as well as when initiated as an interventional regimen following symptom onset. The KD minimally impacted body weight during the experimental time course, increased circulating ketones, prevented motor and ocular deficits, preserved myelination of the optic nerve, and reduced infiltration of immune cells to optic nerves. The KD also increased anti-inflammatory-associated omega-3 fatty acids in the plasma and reduced select cytokines in the circulation associated with EAE-mediated pathological inflammation. Discussion: In light of ongoing clinical trials using dietary strategies to treat people with MS, these findings support that a KD enriched in MCTs, omega-3 fatty acids, and fiber promotes a systemic anti-inflammatory milieu and ameliorates autoimmune-induced demyelinating visual and motor deficits.

5.
Redox Biol ; 59: 102550, 2023 02.
Article in English | MEDLINE | ID: mdl-36470129

ABSTRACT

Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.


Subject(s)
Multiple Sclerosis , Neurodegenerative Diseases , Mice , Animals , Mitochondria , Superoxide Dismutase/genetics , Motor Neurons , Superoxide Dismutase-1/genetics , Phenotype , Paralysis/genetics , Inflammation/genetics
6.
Mol Vis ; 28: 378-393, 2022.
Article in English | MEDLINE | ID: mdl-36338670

ABSTRACT

Purpose: Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. Methods: Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. Results: SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. Conclusions: These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.


Subject(s)
NF-E2-Related Factor 2 , Retinal Degeneration , Mice , Humans , Animals , Infant , NF-E2-Related Factor 2/metabolism , Retinal Degeneration/pathology , Retinal Pigment Epithelium/metabolism , Oxidative Stress , Isothiocyanates/pharmacology , Isothiocyanates/metabolism , Mice, Knockout
7.
Mol Vis ; 25: 446-461, 2019.
Article in English | MEDLINE | ID: mdl-31523122

ABSTRACT

Purpose: Dimethyl fumarate (DMF) has been approved by the U.S. Food and Drug Administration (FDA) for the treatment of relapsing-remitting multiple sclerosis (RRMS), a demyelinating autoimmune disease characterized by acute episodes of motor, sensory, and cognitive symptoms. Optic neuritis is an episodic sequela experienced by some patients with RRMS that typically presents as acute, monocular vision loss. Episodes of optic neuritis damage and kill retinal ganglion cells (RGCs), and can culminate in permanent vision loss. The purpose of these studies was to evaluate the capacity of DMF to mitigate optic neuritis. The work presented combines studies of a mouse model of MS and a retrospective chart analysis of files of patients with RRMS treated at the MS Center of Excellence within the Oklahoma Medical Research Foundation. Methods: Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model that recapitulates cardinal features of somatic and visual MS pathologies. EAE was induced in female C57BL/6J mice by inoculation with myelin oligodendrocyte glycoprotein peptide (residues 35-55; MOG35-55). DMF or vehicle was administered twice a day by oral gavage. Visual acuity was measured longitudinally with optokinetic tracking. Post-mortem analyses included quantification of RGCs in retinal flatmounts and quantitative PCR (qPCR) of Nrf2 target genes and regulators of myelin. Retrospective chart analyses were performed using data obtained from deidentified files of patients with RRMS. Results: In the EAE mouse studies, DMF decreased optic neuritis severity, preserved vision and RGCs, and concomitantly reduced motor deficits when administered by two different treatment regimens (prevention or interventional). DMF was more efficacious when administered as an interventional therapy, and the beneficial effects occurred independently of the induction of Nrf2 target genes. A complementary retrospective chart analysis demonstrated that DMF increased the time to a recurrence of optic neuritis, and protected against subsequent bouts of optic neuritis. Conclusions: This work underscores the potential of DMF to mitigate the severity and recurrence of optic neuritis episodes in patients with RRMS.


Subject(s)
Dimethyl Fumarate/therapeutic use , Optic Neuritis/drug therapy , Animals , Dimethyl Fumarate/pharmacology , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Optic Neuritis/pathology , Optic Neuritis/physiopathology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Vision, Ocular/drug effects , Visual Acuity/drug effects
8.
J Clin Invest ; 129(8): 3448-3463, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31145101

ABSTRACT

Cystic Fibrosis (CF) is a multi-organ progressive genetic disease caused by loss of functional cystic fibrosis transmembrane conductance regulator (CFTR) channel. Previously, we identified a significant dysfunction in CF cells and model mice of the transcription factor nuclear-factor-E2-related factor-2 (Nrf2), a major regulator of redox balance and inflammatory signaling. Here we report that approved F508del CFTR correctors VX809/VX661 recover diminished Nrf2 function and colocalization with CFTR in CF human primary bronchial epithelia by proximity ligation assay, immunoprecipitation, and immunofluorescence, concordant with CFTR correction. F508del CFTR correctors induced Nrf2 nuclear translocation, Nrf2-dependent luciferase activity, and transcriptional activation of target genes. Rescue of Nrf2 function by VX809/VX661 was dependent on significant correction of F508del and was blocked by inhibition of corrected channel function, or high-level shRNA knockdown of CFTR or F508del-CFTR. Mechanistically, F508del-CFTR modulation restored Nrf2 phosphorylation and its interaction with the coactivator CBP. Our findings demonstrate that sufficient modulation of F508del CFTR function corrects Nrf2 dysfunction in CF.


Subject(s)
Cell Nucleus/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , NF-E2-Related Factor 2/metabolism , Respiratory Mucosa/metabolism , Active Transport, Cell Nucleus/genetics , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/pathology , Humans , Mice , Mice, Transgenic , Mutation , NF-E2-Related Factor 2/genetics , Phosphorylation/genetics , Respiratory Mucosa/pathology
9.
Redox Biol ; 17: 411-422, 2018 07.
Article in English | MEDLINE | ID: mdl-29879550

ABSTRACT

Cellular senescence plays essential roles in tissue homeostasis as well as a host of diseases ranging from cancers to age-related neurodegeneration. Various molecular pathways can induce senescence and these different pathways dictate the phenotypic and metabolic changes that accompany the transition to, and maintenance of, the senescence state. Here, we describe a novel senescence phenotype induced by depletion of UBE2E3, a highly-conserved, metazoan ubiquitin conjugating enzyme. Cells depleted of UBE2E3 become senescent in the absence of overt DNA damage and have a distinct senescence-associated secretory phenotype, increased mitochondrial and lysosomal mass, an increased sensitivity to mitochondrial and lysosomal poisons, and an increased basal autophagic flux. This senescence phenotype can be partially suppressed by co-depletion of either p53 or its cognate target gene, p21CIP1/WAF1, or by co-depleting the tumor suppressor p16INK4a. Together, these data describe a direct link of a ubiquitin conjugating enzyme to cellular senescence and further underscore the consequences of disrupting the integration between the ubiquitin proteolysis system and the autophagy machinery.


Subject(s)
Autophagy/genetics , Cellular Senescence/genetics , Ubiquitin-Conjugating Enzymes/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage/genetics , Homeostasis/genetics , Humans , Mitochondria/genetics , Tumor Suppressor Protein p53/genetics , Ubiquitin/genetics
10.
Front Genet ; 9: 658, 2018.
Article in English | MEDLINE | ID: mdl-30619478

ABSTRACT

Normal function of the retinal pigment epithelium (RPE) is essential for maintaining the structural integrity of retinal photoreceptors and the visual process. Sustained oxidative damage of the RPE due to aging and other risk factors contributes to the development of age-related macular degeneration (AMD). The transcription factor NF-E2-related factor 2 (Nrf2) is a central regulator of cellular antioxidant and detoxification responses. Enhancing Nrf2 function protects RPE cells from oxidation-related apoptosis and cell death. Previously, we demonstrated that Nrf2 activation can be induced by endoplasmic reticulum (ER) stress; however, the mechanisms are not fully understood. In the present study, we examined the role of X box-binding protein 1 (XBP1), an ER stress-inducible transcription factor, in regulation of Nrf2 in the RPE. We found that RPE-specific XBP1 conditional knockout (cKO) mice exhibit a significant reduction in Nrf2 mRNA and protein levels, along with decreased expression of major Nrf2 target genes, in the RPE/choroid complex. Using primary RPE cells isolated from XBP1 cKO mice and human ARPE-19 cell line, we confirmed that loss of XBP1 gene or pharmacological inhibition of XBP1 splicing drastically reduces Nrf2 levels in the RPE. Conversely, overexpression of spliced XBP1 results in a modest but significant increase in cytosolic and nuclear Nrf2 protein levels without affecting the transcription of Nrf2 gene. Moreover, induction of ER stress by tunicamycin and thapsigargin markedly increases Nrf2 expression, which is abolished in cells pretreated with XBP1 splicing inhibitors 4µ8C and quinotrierixin. Mechanistic studies indicate that quinotrierixin reduces Nrf2 expression likely through inhibition of protein translation. Finally, we demonstrate that overexpression of Nrf2 protected RPE cells against oxidative injury but appeared to be insufficient to rescue from XBP1 deficiency-induced cell death. Taken together, our results indicate that XBP1 modulates Nrf2 activity in RPE cells and that XBP1 deficiency contributes to oxidative injury of the RPE.

11.
J Cell Sci ; 130(20): 3467-3480, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28839075

ABSTRACT

The Nrf2 transcription factor is a master regulator of the cellular anti-stress response. A population of the transcription factor associates with the mitochondria through a complex with KEAP1 and the mitochondrial outer membrane histidine phosphatase, PGAM5. To determine the function of this mitochondrial complex, we knocked down each component and assessed mitochondrial morphology and distribution. We discovered that depletion of Nrf2 or PGAM5, but not KEAP1, inhibits mitochondrial retrograde trafficking induced by proteasome inhibition. Mechanistically, this disrupted motility results from aberrant degradation of Miro2, a mitochondrial GTPase that links mitochondria to microtubules. Rescue experiments demonstrate that this Miro2 degradation involves the KEAP1-cullin-3 E3 ubiquitin ligase and the proteasome. These data are consistent with a model in which an intact complex of PGAM5-KEAP1-Nrf2 preserves mitochondrial motility by suppressing dominant-negative KEAP1 activity. These data further provide a mechanistic explanation for how age-dependent declines in Nrf2 expression impact mitochondrial motility and induce functional deficits commonly linked to neurodegeneration.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phosphoprotein Phosphatases/metabolism , Animals , Biological Transport , Female , HEK293 Cells , Humans , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Microtubules/metabolism , Mitochondrial Dynamics , Protein Domains , Proteolysis , rho GTP-Binding Proteins/metabolism
12.
J Cell Biol ; 216(3): 641-656, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28193700

ABSTRACT

Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.


Subject(s)
PTEN Phosphohydrolase/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Tumor Suppressor Proteins/metabolism , beta Karyopherins/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , HeLa Cells , Humans , Lung Neoplasms/metabolism , Mice , Ubiquitin-Conjugating Enzymes/metabolism
13.
Redox Biol ; 11: 103-110, 2017 04.
Article in English | MEDLINE | ID: mdl-27889639

ABSTRACT

The KEAP1-Nrf2-ARE antioxidant system is a principal means by which cells respond to oxidative and xenobiotic stresses. Sulforaphane (SFN), an electrophilic isothiocyanate derived from cruciferous vegetables, activates the KEAP1-Nrf2-ARE pathway and has become a molecule-of-interest in the treatment of diseases in which chronic oxidative stress plays a major etiological role. We demonstrate here that the mitochondria of cultured, human retinal pigment epithelial (RPE-1) cells treated with SFN undergo hyperfusion that is independent of both Nrf2 and its cytoplasmic inhibitor KEAP1. Mitochondrial fusion has been reported to be cytoprotective by inhibiting pore formation in mitochondria during apoptosis, and consistent with this, we show Nrf2-independent, cytoprotection of SFN-treated cells exposed to the apoptosis-inducer, staurosporine. Mechanistically, SFN mitigates the recruitment and/or retention of the soluble fission factor Drp1 to mitochondria and to peroxisomes but does not affect overall Drp1 abundance. These data demonstrate that the beneficial properties of SFN extend beyond activation of the KEAP1-Nrf2-ARE system and warrant further interrogation given the current use of this agent in multiple clinical trials.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Mitochondria/genetics , NF-E2-Related Factor 2/genetics , Antioxidants/pharmacology , Apoptosis/drug effects , Dynamins/genetics , Humans , Isothiocyanates/pharmacology , Mitochondria/drug effects , Mitochondrial Dynamics/genetics , Oxidative Stress/drug effects , Retinal Pigment Epithelium/metabolism , Signal Transduction/drug effects , Sulfoxides
14.
Mol Vis ; 22: 332-41, 2016.
Article in English | MEDLINE | ID: mdl-27122964

ABSTRACT

PURPOSE: Optic neuritis affects most patients with multiple sclerosis (MS), and current treatments are unreliable. The purpose of this study was to characterize the contribution of Th1 and Th17 cells to the development of optic neuritis. METHODS: Mice were passively transferred myelin-specific Th1 or Th17 cells to induce experimental autoimmune encephalomyelitis (EAE), a model of neuroautoimmunity. Visual acuity was assessed daily with optokinetic tracking, and 1, 2, and 3 weeks post-induction, optic nerves and retinas were harvested for immunohistochemical analyses. RESULTS: Passive transfer experimental autoimmune encephalomyelitis elicits acute episodes of asymmetric visual deficits and is exacerbated in Th17-EAE relative to Th1-EAE. The Th17-EAE optic nerves contained more inflammatory infiltrates and an increased neutrophil to macrophage ratio. Significant geographic degeneration of the retinal ganglion cells accompanied Th17-EAE but not Th1. CONCLUSIONS: Th17-induced transfer EAE recapitulates pathologies observed in MS-associated optic neuritis, namely, monocular episodes of vision loss, optic nerve inflammation, and geographic retinal ganglion cell (RGC) degeneration.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Myelin Sheath/immunology , Optic Neuritis/immunology , Retinal Ganglion Cells/pathology , Th17 Cells/immunology , Animals , Apoptosis/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Immunization, Passive , Macrophages/immunology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Neutrophils/immunology , Optic Neuritis/pathology , Th1 Cells/immunology , Visual Acuity/physiology
15.
Mol Vis ; 22: 1503-1513, 2016.
Article in English | MEDLINE | ID: mdl-28050123

ABSTRACT

PURPOSE: Optic neuritis, inflammation of the optic nerve, is experienced by most patients with multiple sclerosis (MS) and is typically characterized by episodes of acute, monocular vision loss. These episodes of inflammation can lead to damage or degeneration of the retinal ganglion cells (RGCs), the axons of which comprise the optic nerve. Experimental autoimmune encephalomyelitis (EAE) is a well-established model of MS in which mice are immunized to produce a neuroautoimmunity that recapitulates the cardinal hallmarks of human disease, namely, inflammation, demyelination, and neurodegeneration of the brain, spinal cord, and optic nerve. Inflammation-associated oxidative stress plays a key role in promoting spinal cord damage in EAE. However, the role of oxidative stress in optic neuritis and the associated visual deficits has not been studied. To address this gap in research, we sought to determine how a deficiency in the master antioxidant transcription factor (using nuclear factor-E2-related factor [Nrf2]-deficient mice) affects visual pathology in the EAE model. METHODS: EAE was induced in 8-week-old wild-type (WT) and Nrf2 knockout (KO) mice by immunization against the myelin oligodendrocyte glycoprotein (MOG) peptide antigen. Motor deficits were monitored daily, as was visual acuity using the established functional optokinetic tracking (OKT) assay. Mice were euthanized 21 days post-immunization for histological analyses. The optic nerves were paraffin-embedded and stained with hematoxylin and eosin (H&E) or immune cell type-specific antibodies to analyze inflammatory infiltrates. The retinas were flatmounted and stained with an RGC-specific antibody, and the RGCs were counted to assess neurodegeneration. T-helper (Th) cell-associated cytokines were measured in spleens with enzyme-linked immunosorbent assay (ELISA). Immune analyses of healthy, non-EAE mice were characterized with flow cytometry to assess the baseline immune cell profiles. RESULTS: Female Nrf2 KO mice exhibited more severe EAE-induced motor deficits compared with female WT mice. In both genders, EAE elicited more severe visual acuity deficits, inflammation of the optic nerve, and RGC degeneration in KO mice compared with their strain- and age-matched WT counterparts. Visual acuity deficits were primarily present in (and only exacerbated in) one eye of each mouse. Excess inflammatory cells within the optic nerves of the KO mice were primarily comprised of T-cells, and greater RGC degeneration in the KO mice was most prevalent in the central retina compared with the peripheral retina. Nrf2 KO spleens exhibited an increased Th1- but not Th17-associated immune response. This enhanced pathology in the KO mice was not due to global differences in immune system development between the two genotypes. CONCLUSIONS: This is the first study to report that genetic ablation of Nrf2 exacerbates visual deficits, inflammation of the optic nerve, and RGC degeneration in a murine model of MS, suggesting that Nrf2 plays a neuro- and cytoprotective role in EAE-associated optic neuritis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/complications , Encephalomyelitis, Autoimmune, Experimental/pathology , NF-E2-Related Factor 2/deficiency , Optic Neuritis/complications , Optic Neuritis/pathology , Visual Acuity , Animals , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Optic Nerve/pathology , Optic Neuritis/physiopathology , Paralysis/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Sex Characteristics , Spleen/pathology , Th1 Cells/metabolism
16.
Adv Exp Med Biol ; 854: 67-72, 2016.
Article in English | MEDLINE | ID: mdl-26427395

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of acquired and irreversible blindness among elderly Americans. Most AMD patients have the dry form of the disease (dAMD) for which reliable therapies are lacking. A major obstacle to the development of effective treatments is a deficit in our understanding of what triggers dAMD onset. This is particularly the case with respect to the events that cause retinal pigment epithelial (RPE) cells to transition from a state of health and homeostasis to one of dysfunction and atrophy. These cells provide critical support to the photoreceptors and their atrophy often precipitates photoreceptor death in dAMD. Chronic oxidative stress is a primary driver of age-dependent, RPE atrophy. Sources of this stress have been identified (e.g., cigarette smoke, photooxidized bisretinoids), but we still do not understand how these stressors damage RPE constituents or what age-dependent changes undermine the cytoprotective systems in the RPE. This review focuses on Nrf2, the master antioxidant transcription factor, and its role in the RPE during aging and dAMD onset.


Subject(s)
Macular Degeneration/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Retinal Pigment Epithelium/metabolism , Animals , Antioxidants/metabolism , Atrophy , Homeostasis , Humans , Macular Degeneration/pathology , Mitochondria/metabolism , Retinal Pigment Epithelium/pathology
17.
BMC Neurosci ; 16: 76, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26566974

ABSTRACT

BACKGROUND: UbcM2 is a ubiquitin-conjugating enzyme with roles in the turnover of damaged and misfolded proteins, cell cycle progression, development, and regulation of the antioxidant transcription factor, Nrf2. Recent screens have identified binding partners of the enzyme that are associated with various neurodegenerative diseases, and our previous studies have shown that UbcM2 is enriched in retina and brain. RESULTS: In the current study, we characterized UbcM2 protein expression in various structures and cell types in the murine brain. Immunofluorescence analysis of paraffin-embedded brain sections revealed that UbcM2 is ubiquitously expressed throughout the brain, is enriched in hindbrain and cortex, and is robustly expressed in neurons. In contrast, the enzyme is undetectable in most astrocytes and microglia. As dysfunction of the ubiquitin proteasome system (UPS) has been linked to many age-related neurological diseases, we compared UbcM2 expression levels in young versus aged wild-type mice and found a global decrease in expression in aged brains, with reductions of 10 % or greater in five substructures (cerebellar granule cell layer, primary motor cortex, olfactory nucleus, superior colliculus, and secondary visual cortex). CONCLUSIONS: These studies represent the first protein expression profiling of a ubiquitin-conjugating enzyme in the brain and support the notion that deficits in protein degradation and proteostasis associated with neurodegenerative diseases may be, in part, attributable to age-dependent reductions in the enzymatic machinery of the UPS.


Subject(s)
Cerebral Cortex/metabolism , Neurons/metabolism , Rhombencephalon/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Age Factors , Animals , Mice , Mice, Inbred C57BL
18.
Free Radic Biol Med ; 87: 157-68, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26119786

ABSTRACT

Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants.


Subject(s)
Antioxidants/administration & dosage , Benzenesulfonates/administration & dosage , Free Radicals/metabolism , Glioma/drug therapy , Imines/administration & dosage , Animals , Contrast Media/chemistry , Cyclic N-Oxides/chemistry , Disease Models, Animal , Free Radicals/chemistry , Glioma/metabolism , Glioma/pathology , Humans , Magnetic Resonance Imaging , Male , Malondialdehyde/chemistry , Malondialdehyde/metabolism , Rats , Spin Trapping
19.
Mol Biol Cell ; 26(2): 327-38, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25378586

ABSTRACT

The transcription factor NF-E2 p45-related factor (Nrf2) induces the expression of cytoprotective proteins that maintain and restore redox homeostasis. Nrf2 levels and activity are tightly regulated, and three subcellular populations of the transcription factor have been identified. During homeostasis, the majority of Nrf2 is degraded in the cytoplasm by ubiquitin (Ub)-mediated degradation. A second population is transcriptionally active in the nucleus, and a third population localizes to the outer mitochondrial membrane. Still unresolved are the mechanisms and factors that govern Nrf2 distribution between its subcellular locales. We show here that the Ub-conjugating enzyme UBE2E3 and its nuclear import receptor importin 11 (Imp-11) regulate Nrf2 distribution and activity. Knockdown of UBE2E3 reduces nuclear Nrf2, decreases Nrf2 target gene expression, and relocalizes the transcription factor to a perinuclear cluster of mitochondria. In a complementary manner, Imp-11 functions to restrict KEAP1, the major suppressor of Nrf2, from prematurely extracting the transcription factor off of a subset of target gene promoters. These findings identify a novel pathway of Nrf2 modulation during homeostasis and support a model in which UBE2E3 and Imp-11 promote Nrf2 transcriptional activity by restricting the transcription factor from partitioning to the mitochondria and limiting the repressive activity of nuclear KEAP1.


Subject(s)
Homeostasis , NF-E2-Related Factor 2/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , beta Karyopherins/metabolism , Blotting, Western , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , Microscopy, Fluorescence , Mitochondrial Membranes/metabolism , NF-E2-Related Factor 2/genetics , Oxidation-Reduction , Protein Transport/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/genetics , beta Karyopherins/genetics
20.
Biochemistry ; 53(24): 4004-14, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24901938

ABSTRACT

Proteins can be modified on lysines (K) with a single ubiquitin (Ub) or with polymers of Ub (polyUb). These different configurations and their respective topologies are primary factors for determining whether substrates are targeted to the proteasome for degradation or directed to nonproteolytic outcomes. We report here on the intrinsic ubiquitylation properties of UbcM2 (UBE2E3/UbcH9), a conserved Ub-conjugating enzyme linked to cell proliferation, development, and the cellular antioxidant defense system. Using a fully recombinant ubiquitylation assay, we show that UbcM2 is severely limited in its ability to synthesize polyUb chains with wild-type Ub. Restriction to monoubiquitylation is governed by multiple residues on the backside of the enzyme, far removed from its active site, and by lysine 48 of Ub. UbcM2 with mutated backside residues can synthesize K63-linked polyUb chains and to a lesser extent K6- and K48-linked chains. Additionally, we identified a single residue on the backside of the enzyme that promotes monoubiquitylation. Together, these findings reveal that a combination of noncatalytic residues within the Ubc catalytic core domain of UbcM2 as well as a lysine(s) within Ub can relegate a Ub-conjugating enzyme to monoubiquitylate its cognate targets despite having the latent capacity to construct polyUb chains. The two-fold mechanism for restricting activity to monoubiquitylation provides added insurance that UbcM2 will not build polyUb chains on its substrates, even under conditions of high local Ub concentrations.


Subject(s)
Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/chemistry , Ubiquitination , Lysine/chemistry , Polyubiquitin/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...