Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 194: 106316, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150789

ABSTRACT

Ocean acidification has increased due to the enhanced solubility of CO2 in seawater. Mangrove macroalgae in tropical and subtropical coastal regions can benefit from the higher availability of CO2 for photosynthesis and primary production. However, they can be negatively affected by the simultaneously occurring warming and increased salinity in estuaries. Thus, we analyzed the isolated effects of ocean acidification and the interactive effects of increased temperature and salinity on the low molecular weight carbohydrate (LMWC) contents of the mangrove red macroalgae Bostrychia montagnei and Bostrychia calliptera from Brazilian tropical and subtropical populations. Specimens from both climatic niches were tolerant to pH decreased by CO2 enrichment and enhanced their LMWC contents under increased availability of CO2. Specimens from both climatic niches also accumulated their dulcitol and sorbitol contents to cope with warming and salt stress. Nevertheless, temperature of 34 °C was lethal for tropical macroalgae, while 29 °C and 31 °C were lethal for subtropical B. calliptera under salinity of 35. Tropical and subtropical B. montagnei synthesized dulcitol (5-110 mmol kg-1 dry weight) and sorbitol (5-100 mmol kg-1 dry weight) as osmoregulatory, energy and thermal protection compounds, whereas tropical and subtropical B. calliptera synthesized mainly dulcitol (10-210 mmol kg-1 dry weight). Although digeneaside has an energy function in Bostrychia spp., it is not an osmolyte or thermal protection compound. Our data demonstrated that both tropical and subtropical Bostrychia spp. benefit from ocean acidification by CO2 enrichment, increasing their LMWC contents. However, warming and increased salinity in estuaries will be detrimental to them, even they producing protective metabolites. Multifactorial approaches are recommended to investigate whether negative effects of increased temperature and salinity nullify positive effects of ocean acidification on these Bostrychia species/populations.


Subject(s)
Seawater , Seaweed , Seawater/chemistry , Salinity , Hydrogen-Ion Concentration , Carbon Dioxide/analysis , Ocean Acidification , Molecular Weight , Temperature , Carbohydrates , Sorbitol , Galactitol , Oceans and Seas , Global Warming
2.
Protoplasma ; 260(6): 1539-1553, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37291393

ABSTRACT

For the present study, we collected the Ulvophyceae species Trentepohlia aurea from limestone rock near Berchtesgaden, Germany, and the closely related taxa T. umbrina from Tilia cordata tree bark and T. jolithus from concrete wall both in Rostock, Germany. Freshly sampled material stained with Auramine O, DIOC6, and FM 1-43 showed an intact physiological status. Cell walls were depicted with calcofluor white and Carbotrace. When subjected to three repeated and controlled cycles of desiccation over silica gel (~ 10% relative humidity) followed by rehydration, T. aurea recovered about 50% of the initial photosynthetic yield of photosystem II (YII). In contrast, T. umbrina and T. jolithus recovered to 100% of the initial YII. HPLC and GC analysis of compatible solutes found highest proportions of erythritol in T. umbrina and mannitol/arabitol in T. jolithus. The lowest total compatible solute concentrations were detected in T. aurea, while the C/N ratio was highest in this species, indicative of nitrogen limitation. The prominent orange to red coloration of all Trentepohlia was due to extremely high carotenoid to Chl a ratio (15.9 in T. jolithus, 7.8 in T. aurea, and 6.6. in T. umbrina). Photosynthetic oxygen production was positive up to ~ 1500 µmol photons m-2 s-1 with the highest Pmax and alpha values in T. aurea. All strains showed a broad temperature tolerance with optima for gross photosynthesis between 20 and 35 °C. The presented data suggest that all investigated Trentepohlia species are well adapted to their terrestrial lifestyle on exposed to sunlight on a vertical substrate with little water holding capacity. Nevertheless, the three Trentepohlia species differed concerning their desiccation tolerance and compatible solute concentrations. The lower compatible solute contents in T. aurea explain the incomplete recovery of YII after rehydration.

3.
Front Microbiol ; 14: 1279151, 2023.
Article in English | MEDLINE | ID: mdl-38169811

ABSTRACT

Terrestrial diatoms are widespread in a large variety of habitats and are regularly recorded in biocrusts. Although diatoms have long been known to live in terrestrial habitats, only a few studies have focused on their diversity of ecophysiology. Here we present a study on the ecophysiological performance of five terrestrial diatom cultures from biocrusts, which were collected in sand dunes of the German coast of the Baltic Sea. The sampling sites were selected along a gradient of human impacts on the dunes. The richness of diatom species, roughly estimated from permanent slides, was around 30 species per sampling site. The species abundance was calculated in the same way revealing a high proportion of broken diatom frustules. All diatom cultures established in the laboratory showed no photoinhibition and high oxygen production along a light gradient. The desiccation tolerance differed among the strains, with high recovery observed for Hantzschia abundans and Achnanthes coarctata and low to no recovery for Pinnularia borealis and Pinnularia intermedia. The maximum growth rate for most strains was between 25 and 30°C. These temperatures can be easily reached in their natural environments. Nevertheless, during short-term exposure to elevated temperatures, oxygen production was recorded up to 35°C. Interestingly, two of five diatom cultures (Hantzschia abundans and Pinnularia borealis) produced mycosporine-like amino acids. These UV-protective substances are known from marine diatoms but not previously reported in terrestrial diatoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...