Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Calcium ; 97: 102408, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33873072

ABSTRACT

Catalyzed by zDHHC-PAT enzymes and reversed by thioesterases, protein palmitoylation is the only post-translational modification recognized to regulate the sodium/calcium exchanger NCX1. NCX1 palmitoylation occurs at a single site at position 739 in its large regulatory intracellular loop. An amphipathic ɑ-helix between residues 740-756 is a critical for NCX1 palmitoylation. Given the rich background of the structural elements involving in NCX1 palmitoylation, the molecular basis of NCX1 palmitoylation is still relatively poorly understood. Here we found that (1) the identity of palmitoylation machinery of NCX1 controls its spatial organization within the cell, (2) the NCX1 amphipathic ɑ-helix directly interacts with zDHHC-PATs, (3) NCX1 is still palmitoylated when it is arrested in either Golgi or ER, indicating that NCX1 is a substrate for multiple zDHHC-PATs, (4) the thioesterase APT1 but not APT2 as a part of NCX1-depalmitoylation machinery governs subcellular organization of NCX1, (5) APT1 catalyzes NCX1 depalmitoylation in the Golgi but not in the ER. We also report that NCX2 and NCX3 are dually palmitoylated, with important implications for substrate recognition and enzyme catalysis by zDHHC-PATs. Our results could support new molecular or pharmacological strategies targeting the NCX1 palmitoylation and depalmitoylation machinery.

2.
Commun Biol ; 3(1): 411, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737405

ABSTRACT

Although palmitoylation regulates numerous cellular processes, as yet efforts to manipulate this post-translational modification for therapeutic gain have proved unsuccessful. The Na-pump accessory sub-unit phospholemman (PLM) is palmitoylated by zDHHC5. Here, we show that PLM palmitoylation is facilitated by recruitment of the Na-pump α sub-unit to a specific site on zDHHC5 that contains a juxtamembrane amphipathic helix. Site-specific palmitoylation and GlcNAcylation of this helix increased binding between the Na-pump and zDHHC5, promoting PLM palmitoylation. In contrast, disruption of the zDHHC5-Na-pump interaction with a cell penetrating peptide reduced PLM palmitoylation. Our results suggest that by manipulating the recruitment of specific substrates to particular zDHHC-palmitoyl acyl transferases, the palmitoylation status of individual proteins can be selectively altered, thus opening the door to the development of molecular modulators of protein palmitoylation for the treatment of disease.


Subject(s)
Acetyltransferases/genetics , Acyltransferases/genetics , Lipoylation/genetics , Membrane Proteins/genetics , Phosphoproteins/genetics , Animals , Cell Membrane/genetics , Cell-Penetrating Peptides/genetics , Humans , Mice , Phosphorylation/genetics , Protein Processing, Post-Translational/genetics , Rats , Sodium-Potassium-Exchanging ATPase/genetics , Substrate Specificity/genetics
3.
Cell Rep ; 31(10): 107697, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32521252

ABSTRACT

The transmembrane sodium-calcium (Na-Ca) exchanger 1 (NCX1) regulates cytoplasmic Ca levels by facilitating electrogenic exchange of Ca for Na. Palmitoylation, the only reversible post-translational modification known to modulate NCX1 activity, controls NCX1 inactivation. Here, we show that palmitoylation of NCX1 modifies the structural arrangement of the NCX1 dimer and controls its affinity for lipid-ordered membrane domains. NCX1 palmitoylation occurs dynamically at the cell surface under the control of the enzymes zDHHC5 and APT1. We identify the position of the endogenous exchange inhibitory peptide (XIP) binding site within the NCX1 regulatory intracellular loop and demonstrate that palmitoylation controls the ability of XIP to bind this site. We also show that changes in NCX1 palmitoylation change cytosolic Ca. Our results thus demonstrate the broad molecular consequences of NCX1 palmitoylation and highlight a means to manipulate the inactivation of this ubiquitous ion transporter that could ameliorate pathologies linked to Ca overload via NCX1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Sodium-Calcium Exchanger/metabolism , Animals , Binding Sites , Calcium/metabolism , HEK293 Cells , Humans , Ion Transport , Lipoylation , Protein Domains , Protein Processing, Post-Translational , Rabbits , Rats , Rats, Wistar , Sodium-Calcium Exchanger/genetics
4.
Crit Rev Biochem Mol Biol ; 53(2): 175-191, 2018 04.
Article in English | MEDLINE | ID: mdl-29424237

ABSTRACT

The ubiquitous sodium/potassium ATPase (Na pump) is the most abundant primary active transporter at the cell surface of multiple cell types, including ventricular myocytes in the heart. The activity of the Na pump establishes transmembrane ion gradients that control numerous events at the cell surface, positioning it as a key regulator of the contractile and metabolic state of the myocardium. Defects in Na pump activity and regulation elevate intracellular Na in cardiac muscle, playing a causal role in the development of cardiac hypertrophy, diastolic dysfunction, arrhythmias and heart failure. Palmitoylation is the reversible conjugation of the fatty acid palmitate to specific protein cysteine residues; all subunits of the cardiac Na pump are palmitoylated. Palmitoylation of the pump's accessory subunit phospholemman (PLM) by the cell surface palmitoyl acyl transferase DHHC5 leads to pump inhibition, possibly by altering the relationship between the pump catalytic α subunit and specifically bound membrane lipids. In this review, we discuss the functional impact of PLM palmitoylation on the cardiac Na pump and the molecular basis of recognition of PLM by its palmitoylating enzyme DHHC5, as well as effects of palmitoylation on Na pump cell surface abundance in the cardiac muscle. We also highlight the numerous unanswered questions regarding the cellular control of this fundamentally important regulatory process.


Subject(s)
Heart Diseases/enzymology , Lipoylation , Myocardium/enzymology , Myocytes, Cardiac/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Heart Diseases/genetics , Heart Diseases/pathology , Heart Ventricles/enzymology , Heart Ventricles/pathology , Humans , Ion Transport/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Myocardium/pathology , Myocytes, Cardiac/pathology , Palmitic Acid/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Sodium-Potassium-Exchanging ATPase/genetics
6.
J Biol Chem ; 292(25): 10745-10752, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28432123

ABSTRACT

The electrogenic sodium/calcium exchanger (NCX) mediates bidirectional calcium transport controlled by the transmembrane sodium gradient. NCX inactivation occurs in the absence of phosphatidylinositol 4,5-bisphosphate and is facilitated by palmitoylation of a single cysteine at position 739 within the large intracellular loop of NCX. The aim of this investigation was to identify the structural determinants of NCX1 palmitoylation. Full-length NCX1 (FL-NCX1) and a YFP fusion protein of the NCX1 large intracellular loop (YFP-NCX1) were expressed in HEK cells. Single amino acid changes around Cys-739 in FL-NCX1 and deletions on the N-terminal side of Cys-739 in YFP-NCX1 did not affect NCX1 palmitoylation, with the exception of the rare human polymorphism S738F, which enhanced FL-NCX1 palmitoylation, and D741A, which modestly reduced it. In contrast, deletion of a 21-amino acid segment enriched in aromatic amino acids on the C-terminal side of Cys-739 abolished YFP-NCX1 palmitoylation. We hypothesized that this segment forms an amphipathic α-helix whose properties facilitate Cys-739 palmitoylation. Introduction of negatively charged amino acids to the hydrophobic face or of helix-breaking prolines impaired palmitoylation of both YFP-NCX1 and FL-NCX1. Alanine mutations on the hydrophilic face of the helix significantly reduced FL-NCX1 palmitoylation. Of note, when the helix-containing segment was introduced adjacent to cysteines that are not normally palmitoylated, they became palmitoylation sites. In conclusion, we have identified an amphipathic α-helix in the NCX1 large intracellular loop that controls NCX1 palmitoylation. NCX1 palmitoylation is governed by a distal secondary structure element rather than by local primary sequence.


Subject(s)
Lipoylation/physiology , Protein Processing, Post-Translational/physiology , Sodium-Calcium Exchanger/metabolism , Amino Acid Substitution , Animals , Dogs , HEK293 Cells , Humans , Mutation, Missense , Protein Domains , Protein Structure, Secondary , Sodium-Calcium Exchanger/genetics
7.
Biotechniques ; 62(2): 69-75, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28193150

ABSTRACT

S-palmitoylation (S-acylation) is emerging as an important dynamic post-translational modification of cysteine residues within proteins. Current assays for protein S-palmitoylation involve either in vivo labeling or chemical cleavage of S-palmitoyl groups to reveal a free cysteine sulfhydryl that can be subsequently labeled with an affinity handle (acyl-exchange). Assays for protein S-palmitoylation using acyl-exchange chemistry therefore require blocking of non-S-palmitoylated cysteines, typically using N-ethylmaleimide (NEM), to prevent non-specific detection. This in turn necessitates multiple precipitation-based clean-up steps to remove reagents between stages, often leading to variable sample loss, reduced signal, or protein aggregation. These combine to reduce the sensitivity, reliability, and accuracy of these assays, which also require a substantial amount of time to perform. By substituting these precipitation steps with chemical scavenging of NEM by 2,3-dimethyl-1,3-butadiene in an aqueous Diels-Alder 4+2 cyclo-addition reaction, it is possible to greatly improve sensitivity and accuracy while reducing the hands-on time and overall time required for the assay.


Subject(s)
Maleimides/chemistry , Maleimides/metabolism , Protein Processing, Post-Translational , Proteins/chemistry , Proteins/metabolism , Acylation , Alkenes/chemistry , Arabidopsis , Butanes/chemistry , Cysteine/chemistry , Cysteine/metabolism , Ethylmaleimide , Lipoylation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...