Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 5(34): 7109-7117, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-32263901

ABSTRACT

The present work involves the design of a multifunctional system based on gold nanoshells (AuNSs) decorated with lanthanide-based upconversion nanoparticles (UCNPs) intended as an optical heater and a temperature probe at the nanoscale. The synthesis of NaGdF4 UCNPs doped with ions Yb3+:Er3+ was performed via thermal decomposition of lanthanide fluoride precursors at high temperatures (>300 °C) in the presence of a coordinating ligand (oleic acid). UCNPs were synthesized at three different temperatures (310, 315 and 320 °C) and characterized in terms of morphological, structural and emission properties. In view of the intended biological applications, the surface of hydrophobic oleate-capped UCNPs was modified using a silica coating to achieve sufficient water dispersibility, through a modified Stöber process using a reverse micro-emulsion method. Monodisperse NaGdF4:Yb3+:Er3+ upconversion nanocrystals (∼25 nm dia.) were obtained in cubic (at 310, 315 °C) and hexagonal (at 320 °C) phases. The UCNPs in the hexagonal phase were shown to be more suitable as temperature sensors, due to their lower red-to-green emission ratios and higher thermal sensitivities. The emission spectrum of NaGdF4:Yb3+:Er3+ (oleate- or silica-coated) UCNPs was recorded at different temperatures in the vicinity of the physiological range (20-70 °C) and presented suitable properties for application as temperature sensors, such as excellent linearity (r2 > 0.99) and sensitivity (>3 × 10-3 K-1). The heating capacity of AuNSs@UCNPs was verified by monitoring the Er3+ emission, showing their potential for application as a hyperthermia agent controlled using a nanothermometer function.

2.
Opt Lett ; 36(15): 2919-21, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21808358

ABSTRACT

We explore a rapid route for fabricating silver nanoparticles (NPs) at the end of an optical fiber. The size and number of silver NPs can be controlled by varying the exposure doses. The effect of the refractive index of different solvents on the extinction spectra have been studied as a proof of concept of a fiber integrated plasmon-based sensor.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Nanotechnology/methods , Optical Fibers , Metal Nanoparticles/chemistry , Silver/chemistry
3.
Nanotechnology ; 21(9): 095605, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20124664

ABSTRACT

The present paper reports on the spatially controlled synthesis of silver nanoparticles (NPs) and silver nanowires by photosensitized reduction. In a first approach, direct photogeneration of silver NPs at the end of an optical fiber was carried out. Control of both size and density of silver NPs was possible by changing the photonic conditions. In a further development, a photochemically assisted procedure allowing silver to be deposited at the surface of a polymer microtip was implemented. Finally, polymer tips terminated by silver nanowires were fabricated by simultaneous photopolymerization and silver photoreduction. The silver NPs were characterized by UV-visible spectroscopy and scanning electron microscopy.

4.
J Fluoresc ; 19(2): 311-6, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18792763

ABSTRACT

Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot-quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry.


Subject(s)
Luminescence , Quantum Dots , Luminescent Measurements/standards , Surface Properties
5.
J Microsc ; 229(Pt 3): 421-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18331489

ABSTRACT

We propose a new approach for tuning the Surface Plasmon (SP) resonance wavelength using hybrid nanoparticles. Our approach is based on nanoscale photopolymerization around metal nanoparticles. The enhanced optical near-field of silver nanoparticles triggers local photopolymerization. As a result, atomic force microscopy reveals two nanoscale polymerized lobes around nanoparticles, with a controlled effective index distribution. A spectral breaking degeneracy of surface plasmon resonance of the nanoparticles has been demonstrated by polarized extinction spectroscopy.

6.
J Microsc ; 229(Pt 3): 469-74, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18331497

ABSTRACT

We report on local photo-induced oxidation of porous silicon in water at room temperature. Starting from a nonluminescent sample, the oxidation process induces luminescence which was found to first increase and then decrease as a function of the oxidation time. A clear blue shift is also observed. This effect is believed to be owing to size modification of silicon nanocrystallites and thus is explained in terms of quantum confinement. Optical near-field images and spectrum are used to monitor the photoluminescence modifications after oxidation. As the photoluminescence can be widely tuned in wavelength and intensity, this method offers a way to pattern the emission properties of the sample.

7.
J Microsc ; 229(Pt 2): 270-4, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18304084

ABSTRACT

In this paper, we study the performances of nanosensors based on Localized Surface Plasmon Resonance in the context of biological sensing. We demonstrate the sensitivity and the selectivity of our designed nanosensors by studying the influence of the concentration of Streptavidin on the shift of Localized Surface Plasmon Resonance wavelength. In addition, to study the detection of biomolecules on a single Au nanoparticle, we used a Scanning Near-field Optical Microscope. These results represent new steps for applications in biological research and medical diagnostics.


Subject(s)
Biosensing Techniques/methods , Biotin/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Streptavidin/chemistry , Surface Plasmon Resonance , Gold/chemistry , Microscopy, Electron, Scanning , Protein Binding , Sensitivity and Specificity , Silver/chemistry
8.
Phys Rev Lett ; 98(10): 107402, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17358565

ABSTRACT

We report on controlled nanoscale photopolymerization triggered by enhanced near fields of silver nanoparticles excited close to their dipolar plasmon resonance. By anisotropic polymerization, symmetry of the refractive index of the surrounding medium was broken: C infinity v symmetry turned to C2v symmetry. This allowed for spectral degeneracy breaking in particles plasmon resonance whose apparent peak became continuously tunable with the incident polarization. From the spectral peak, we deduced the refractive-index ellipsoid fabricated around the particles. In addition to this control of optical properties of metal nanoparticles, this method opens new routes for nanoscale photochemistry and provides a new way of quantification of the magnitude of near fields of localized surface plasmons.

9.
J Control Release ; 116(2): 159-69, 2006 Nov 28.
Article in English | MEDLINE | ID: mdl-16904787

ABSTRACT

Recently, we reported on "self-rupturing" microcapsules which consist of a biodegradable dextran-based microgel surrounded by a polyelectrolyte membrane. Degradation of the microgel increases the swelling pressure in the microcapsules which, when sufficiently high, ruptures the surrounding polyelectrolyte membrane. The membrane surrounding the microgels is deposited using the layer-by-layer (LbL) technique, which is based on the alternate adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we characterize with confocal microscopy, electrophoretic mobility, scanning electron microscopy and atomic force microscopy in detail the deposition and the properties of the LbL coatings on the dextran microgels. We show that by fine-tuning the properties of both the microgel core and the LbL membrane the swelling pressure which is evoked by the degradation of the microgel is indeed able to rupture the surrounding LbL membrane. Further, we show that the application of an LbL coating on the surface of the microgels dramatically lowers the burst release from the microcapsules and results in massive release at the time the microcapsules rupture.


Subject(s)
Dextrans/chemistry , Drug Carriers , Hydrogels , Methacrylates/chemistry , Polyamines/chemistry , Polystyrenes/chemistry , Technology, Pharmaceutical , Delayed-Action Preparations , Dextrans/chemical synthesis , Drug Compounding , Electrophoresis , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/chemistry , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration , Methacrylates/chemical synthesis , Microscopy, Atomic Force , Microscopy, Confocal , Microscopy, Electron, Scanning , Particle Size , Permeability , Rhodamines/chemistry , Solubility , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...