Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 436: 129232, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739752

ABSTRACT

Copper stress in the presence of exogenous methyl jasmonate and Serratia plymuthica in a complete trifactorial design with copper (0, 50 µM), methyl jasmonate (0, 1, 10 µM) and Serratia plymuthica (without and with inoculation) was studied on the physiological parameters of Phaseolus coccineus. Copper application reduced biomass and allantoin content, but increased chlorophyll and carotenoids contents as well as catalase and peroxidases activities. Jasmonate did not modify biomass and organic acids levels under copper treatment, but additional inoculation elevated biomass and content of tartrate, malate and succinate. Jasmonate used alone or in combination with bacteria increased superoxide dismutase activity in copper application. With copper, allantoin content elevated at lower jasmonate concentration, but with additional inoculation - at higher jasmonate concentration. Under copper stress, inoculation resulted in higher accumulation of tartrate, malate and citrate contents in roots, which corresponded with lower allantoin concentration in roots. Combined with copper, inoculation reduced catalase and guaiacol peroxidase activities, whereas organic acids content was higher. Under metal stress, with bacteria, jasmonate reduced phenolics content, elevated superoxide dismutase and guaiacol peroxidase activities. The data indicate that jasmonate and S. plymuthica affected most physiological parameters of P. coccineus grown with copper and revealed some effect on biomass.


Subject(s)
Copper , Phaseolus , Acetates , Allantoin/pharmacology , Antioxidants/metabolism , Catalase/metabolism , Copper/toxicity , Cyclopentanes , Malates/pharmacology , Oxidative Stress , Oxylipins , Plant Roots/metabolism , Serratia , Soil , Superoxide Dismutase/metabolism , Svalbard , Tartrates
2.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946773

ABSTRACT

The bearberry (Arctostaphylos uva-ursi L. Spreng.) is a source of herbal material-bearberry leaf (Uvae ursi folium), which is highly valued and sought by pharmaceutical and cosmetic industries. For many years, leaves of this plant have been used in traditional medicine as a diuretic, antimicrobial, and anti-inflammatory agent for various diseases of the urogenital tract. The bearberry has also been proposed as a natural antioxidant additive due to the high contents of phenolic compounds in its leaves. The study was focused on characterization of the basic phytochemical composition and antioxidant activity of extracts derived from bearberry leaves collected from plants located at the southern border of the geographical range of the species in Europe. The investigated herbal material is characterized by a different chemical profile compared to the chemical profiles of bearberry found in other parts of the continent. Bearberry extracts from plants growing in two different habitat types-heathlands and pine forests showed a wide range of variation, especially in the concentration of hyperoside, corilagin, and methylartutin and the total flavonoid contents. In addition to arbutin, bearberry can be a valuable source of phenolic compounds, which are mainly responsible for the antioxidant properties of extracts. The high content of phenols and high values of antioxidant parameters indicate a high potential of bearberry leaves to be used as a powerful natural source of antioxidants in herbal preparations. Therefore, the A. uva-ursi populations can be a source of plant material for pharmaceutical, cosmetic, and food industries.


Subject(s)
Antioxidants/chemistry , Arctostaphylos/chemistry , Plant Leaves/chemistry , Arctostaphylos/growth & development , Europe , Plant Leaves/growth & development
3.
Int J Mol Sci ; 20(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999692

ABSTRACT

The aim of the study was to demonstrate the potential of the promotion and regulation of plant physiology and growth under control and copper stress conditions, and the impact of the exogenous application of methyl jasmonate on this potential. Runner bean plants were treated with methyl jasmonate (1 or 10 µM) (J; J1 or J10) and Cu (50 µM), and inoculated with a bacterial isolate (S17) originating from Spitsbergen soil, and identified as Pseudomonas luteola using the analytical profile index (API) test. Above- and under-ground plant parts were analyzed. The growth parameters; the concentration of the photosynthetic pigments, elements, flavonoids (FLAVO), phenolics (TPC), allantoin (ALLA), and low molecular weight organic acids (LMWOAs); the activity of antioxidant enzymes and enzymes of resistance induction pathways (e.g., superoxide dismutase (SOD), catalase (CAT), ascorbate (APX) and guaiacol (GPX) peroxidase, glucanase (GLU), and phenylalanine (PAL) and tyrosine ammonia-lyase (TAL)), and the antioxidant capacity (AC) were studied. The leaves exhibited substantially higher ALLA and LMWOA concentrations as well as PAL and TAL activities, whereas the roots mostly had higher activities for a majority of the enzymes tested (i.e., SOD, CAT, APX, GPX, and GLU). The inoculation with S17 mitigated the effect of the Cu stress. Under the Cu stress and in the presence of J10, isolate S17 caused an elevation of the shoot fresh weight, K concentration, and TAL activity in the leaves, and APX and GPX (also at J1) activities in the roots. In the absence of Cu, isolate S17 increased the root length and the shoot-to-root ratio, but without statistical significance. In these conditions, S17 contributed to a 236% and 34% enhancement of P and Mn, respectively, in the roots, and a 19% rise of N in the leaves. Under the Cu stress, S17 caused a significant increase in FLAVO and TPC in the leaves. Similarly, the levels of FLAVO, TPC, and AC were enhanced after inoculation with Cu and J1. Regardless of the presence of J, inoculation at Cu excess caused a reduction of SOD and CAT activities, and an elevation of GPX. The effects of inoculation were associated with the application of Cu and J, which modified plant response mainly in a concentration-dependent manner (e.g., PAL, TAL, and LMWOA levels). The conducted studies demonstrated the potential for isolate S17 in the promotion of plant growth.


Subject(s)
Acetates/metabolism , Copper/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Phaseolus/physiology , Plant Growth Regulators/metabolism , Soil Microbiology , Allantoin/metabolism , Ammonia-Lyases/metabolism , Peroxidase/metabolism , Phaseolus/drug effects , Phaseolus/growth & development , Photosynthesis/drug effects , Plant Proteins/metabolism , Superoxide Dismutase/metabolism
4.
Int J Phytoremediation ; 20(4): 338-342, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29584465

ABSTRACT

It was hypothesized that electromagnetic field (EMF) pretreatment of white mustard (Sinapis alba L.) seeds could increase the accumulation of non-essential, pollutant heavy metals such as cadmium (Cd) in shoots. Seeds of white mustard were treated with either 60 or 120 mT of alternating EMF (50 Hz) for 1 minute and then grown in a Petri dish in the presence of Cd, in comparison to the control (seeds grown without EMF pretreatment). Biomass production and content of calcium (Ca) and Cd in seedling shoots were measured. The Cd content in shoots from the EMF-treated seeds was higher in both variants than in the control (by 73% and 78%, respectively; p < 0.05). In plants treated with 60 mT, the Ca content was slightly, but significantly, lower (3%) than in the control. EMF stimulation did not affect the biomass production. The results have shown potential benefits of this physical seed pretreatment method in the context of cadmium phytoextraction, but more research is needed.


Subject(s)
Cadmium/analysis , Soil Pollutants/analysis , Biodegradation, Environmental , Electromagnetic Fields , Seeds/chemistry , Sinapis
5.
Environ Sci Pollut Res Int ; 24(5): 4801-4811, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27987118

ABSTRACT

Soil sealing belongs to the most destructive and damaging processes to the soil environment. Soil sealing interrupts or greatly restricts the exchange of matter and energy between the biosphere, hydrosphere, and atmosphere and the soil environment. The aim of this study was to compare the content of heavy metals (Cd, Cr, Cu, Hg, Fe, Ni, Pb, Zn) of Ekranic Technosols by applying indicators such as geoaccumulation index (I geo), enrichment factor (EF), and pollution load index (PLI), which allowed to determine quantitatively the impact of the soil sealing degree on the content of heavy metals and to distinguish natural from anthropogenic sources of origin of heavy metals. In general, 42 soils from different parts of the city of Torun (NW Poland) were sampled and divided into three groups according to the degree of soil sealing: completely sealed with asphalt or concrete (A), semi-permeable (partially sealed with cobblestones and concrete paving slabs (B)), and reference (non-sealed) (C). The results indicate that the artificial sealing in urban areas slightly affects the content of heavy metals in soils. However, based on PLI, I geo, and EF, it was found that the sealing has influence on soil properties and unsealed soil is the most exposed to the accumulation of pollutants.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Cities , Environmental Pollution/analysis , Poland
6.
Environ Sci Pollut Res Int ; 22(10): 7906-17, 2015 May.
Article in English | MEDLINE | ID: mdl-25510617

ABSTRACT

Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 µM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment.


Subject(s)
Cadmium/toxicity , Dianthus/drug effects , Dianthus/metabolism , Soil Pollutants/toxicity , Buthionine Sulfoximine/pharmacology , Dianthus/genetics , Environmental Monitoring , Glutathione/metabolism , Organic Chemicals/metabolism , Phytochelatins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/metabolism , Poland , Proline/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...