Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(7): e0220339, 2019.
Article in English | MEDLINE | ID: mdl-31344102

ABSTRACT

The goal of this work was to study the phenotypic susceptibility and resistance determinants of N. gonorrhoeae isolates to beta-lactam antimicrobials (benzylpenicillin and ceftriaxone). A total of 522 clinical isolates collected in Russia in 2015-2017 were analysed for susceptibility using the agar dilution method. DNA loci involved in antimicrobial resistance were identified using DNA microarray analysis and sequencing. Resistance to benzylpenicillin remained high, with 7.7% of isolates resistant (MICpen > 1 mg/L) and 47.5% of isolates showing intermediate susceptibility (MICpen = 0.12-1 mg/L). The most frequent resistance determinant (72.4% isolates) was the Asp345 insertion in penA, both as a single mutation and in combination with other mutations, particularly with the substitution Leu421Pro in ponA (39.0%). Mutations affecting the influx and efflux of drugs were also found, including amino acid substitutions in PorB (26.8% isolates) and delA in the promoter region of mtrR (22.8%). The accumulation of mutations in chromosomal genes (penA, pon, porA, and mtrR) led to a stepwise increase in MICpen to values characteristic of intermediate resistance. The presence of blaTEM plasmids was found in 25 isolates (4.8%), resulting in a strong increase in resistance to penicillin (MICpen > 16 mg/L) compared with the chromosomal mutations; 23 plasmids were of the African type with TEM-1 beta-lactamase, and two plasmids were of the Toronto/Rio type with TEM-135 beta-lactamase. Only three isolates were found with reduced susceptibility to ceftriaxone, with MICcef = 0.12-0.25 mg/L. Sequencing of penA did not reveal mutations associated with resistance to third-generation cephalosporins, and the gene structure was non-mosaic. The majority of isolates (21 of 25) carrying the blaTEM plasmid also contained the conjugative plasmid with tetM (resistance to tetracyclines), consistent with previously reported data that the presence of the conjugative plasmid facilitates the transfer of other plasmids associated with antimicrobial resistance.


Subject(s)
Ceftriaxone/therapeutic use , Gonorrhea/drug therapy , Neisseria gonorrhoeae/drug effects , Penicillin G/therapeutic use , beta-Lactam Resistance , Adult , Amino Acid Substitution/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftriaxone/pharmacology , DNA Mutational Analysis , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Female , Gonorrhea/epidemiology , Gonorrhea/microbiology , Humans , Male , Microbial Sensitivity Tests , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/isolation & purification , Penicillin G/pharmacology , Polymorphism, Genetic , Russia/epidemiology , beta-Lactam Resistance/drug effects , beta-Lactam Resistance/genetics , beta-Lactamases/genetics
2.
J Clin Microbiol ; 57(6)2019 06.
Article in English | MEDLINE | ID: mdl-30894437

ABSTRACT

The Russian Gonococcal Antimicrobial Surveillance Programme (RU-GASP) was established in 2004 and operated continuously during the years from 2005 to 2016. The aims of this study were to summarize the RU-GASP results over this 12-year period and evaluate the trends in Neisseria gonorrhoeae antimicrobial resistance in Russia. In total, 5,038 verified N. gonorrhoeae isolates from 40 participating regions were tested for susceptibility to six antimicrobials via an agar dilution method. DNA loci involved in antimicrobial resistance were identified via minisequencing or DNA microarray techniques. From 2005 to 2016, increasing susceptibility to penicillin G (from 22.6% to 63.0%), tetracycline (from 34.8% to 53.0%), and ciprofloxacin (from 50.6% to 68.6%) was observed, but resistance to these drugs remained high. The proportions of isolates nonsusceptible to azithromycin and spectinomycin peaked in 2011 and decreased thereafter. Of the isolates, only 6 and 23 were identified as nonsusceptible to ceftriaxone according to the CLSI definitions and EUCAST breakpoint (0.57% of the total population), respectively. Comparison of N. gonorrhoeae antimicrobial resistance genetic determinants in 2005 versus those in 2016 showed a significant decrease in the number of isolates carrying chromosomal mutations. The proportion of isolates with wild-type genotypes increased from 11.7% in 2005 to 30.3% in 2016. Thus, the RU-GASP can be considered a successful gonorrhea surveillance program, and the current state of N. gonorrhoeae antimicrobial resistance in Russia is less serious than that in other WHO GASP regions.


Subject(s)
Drug Resistance, Bacterial , Gonorrhea/epidemiology , Gonorrhea/microbiology , Neisseria gonorrhoeae/drug effects , Adolescent , Adult , Anti-Infective Agents/pharmacology , Child , Drug Resistance, Bacterial/drug effects , Female , Gonorrhea/drug therapy , Gonorrhea/history , History, 21st Century , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/isolation & purification , Population Surveillance , Russia/epidemiology , Young Adult
3.
BMC Infect Dis ; 16: 389, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27506605

ABSTRACT

BACKGROUND: The widespread distribution of Neisseria gonorrhoeae strains that are resistant to previously used and clinically implemented antibiotics is a significant global public health problem. In line with WHO standards, the national Gonococcal Antimicrobial Surveillance Programme (RU-GASP) has been in existence in Russia since 2004; herein, the current status (2015) is described, including associations between N. gonorrhoeae antimicrobial susceptibility, primary genetic resistance determinants and specific strain sequence types. METHODS: A total of 124 N. gonorrhoeae strains obtained from 9 regions in Russia in 2015 were examined using N. gonorrhoeae Multi-Antigen Sequence Typing (NG-MAST), an antimicrobial susceptibility test according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria and an oligonucleotide microarray for the identification of mutations in the penA, ponA, rpsJ, gyrA and parC genes responsible for penicillin G, tetracycline, and fluoroquinolone resistance. Genogroup (G) isolates were evaluated based on their porB and tbpB sequence types (STs). RESULTS: NG-MAST analysis showed a diversified population of N. gonorrhoeae in Russia with 58 sequence types, 35 of which were described for the first time. The STs 807, 1544, 1993, 5714, 9476 and 12531, which were typical for some Russian Federation regions and several countries of the former Soviet Union, were represented by five or more isolates. The internationally widespread ST 1407 was represented by a single strain in the present study. Division into genogroups facilitated an exploration of the associations between N. gonorrhoeae sequence type, antimicrobial resistance spectra and genetic resistance determinant contents. Preliminarily susceptible (G-807, G-12531) and resistant (G-5714, G-9476) genogroups were revealed. The variability in the most frequently observed STs and genogroups in each participating region indicated geographically restricted antimicrobial susceptibility in N. gonorrhoeae populations. CONCLUSIONS: Resistance or intermediate susceptibility to previously recommended antimicrobials, such as penicillin G (60.5 %), ciprofloxacin (41.1 %) and tetracycline (25 %), is common in the N. gonorrhoeae population. Based on previous reports and current data, ceftriaxone and spectinomycin should be recommended for first-line empiric antimicrobial monotherapy for gonorrhoea in Russia.


Subject(s)
Drug Resistance, Bacterial/genetics , Gonorrhea/epidemiology , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Ceftriaxone/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial/drug effects , Genotype , Gonorrhea/microbiology , Humans , Microbial Sensitivity Tests , Molecular Epidemiology , Neisseria gonorrhoeae/isolation & purification , Oligonucleotide Array Sequence Analysis , Russia/epidemiology , Spectinomycin/pharmacology , Tetracycline/pharmacology
4.
Front Microbiol ; 7: 747, 2016.
Article in English | MEDLINE | ID: mdl-27242760

ABSTRACT

Here, we review sexually transmitted diseases (STDs) caused by pathogenic bacteria and vaginal infections which result from an overgrowth of opportunistic bacterial microflora. First, we describe the STDs, the corresponding pathogens and the antimicrobials used for their treatment. In addition to the well-known diseases caused by single pathogens (i.e., syphilis, gonococcal infections, and chlamydiosis), we consider polymicrobial reproductive tract infections (especially those that are difficult to effectively clinically manage). Then, we summarize the biochemical mechanisms that lead to antimicrobial resistance and the most recent data on the emergence of drug resistance in STD pathogens and bacteria associated with vaginosis. A large amount of research performed in the last 10-15 years has shed light on the enormous diversity of mechanisms of resistance developed by bacteria. A detailed understanding of the mechanisms of antimicrobials action and the emergence of resistance is necessary to modify existing drugs and to develop new ones directed against new targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...