Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Biomater Sci ; 12(12): 3124-3140, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38738995

ABSTRACT

Synthetic tubular grafts currently used in clinical context fail frequently, and the expectations that biomimetic materials could tackle these limitations are high. However, developing tubular materials presenting structural, compositional and functional properties close to those of native tissues remains an unmet challenge. Here we describe a combination of ice templating and topotactic fibrillogenesis of type I collagen, the main component of tissues' extracellular matrix, yielding highly concentrated yet porous tubular collagen materials with controlled hierarchical architecture at multiple length scales, the hallmark of native tissues' organization. By modulating the thermal conductivity of the cylindrical molds, we tune the macroscopic porosity defined by ice. Coupling the aforementioned porosity patterns with two different fibrillogenesis routes results in a new family of tubular materials whose textural features and the supramolecular arrangement of type I collagen are achieved. The resulting materials present hierarchical elastic properties and are successfully colonized by human endothelial cells and alveolar epithelial cells on the luminal side, and by human mesenchymal stem cells on the external side. The proposed straightforward protocol is likely to be adapted for larger graft sizes that address ever-growing clinical needs, such as peripheral arterial disease or tracheal and bronchial reconstructions.


Subject(s)
Biomimetic Materials , Ice , Tissue Engineering , Humans , Biomimetic Materials/chemistry , Porosity , Mesenchymal Stem Cells/cytology , Collagen Type I/chemistry , Animals
2.
Respir Physiol Neurobiol ; 318: 104164, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739151

ABSTRACT

To clarify the contribution of KCNK3/TASK-1 channel chemoreflex in response to hypoxia and hypercapnia, we used a unique Kcnk3-deficient rat. We assessed ventilatory variables using plethysmography in Kcnk3-deficient and wild-type rats at rest in response to hypoxia (10% O2) and hypercapnia (4% CO2). Immunostaining for C-Fos, a marker of neuronal activity, was performed to identify the regions of the respiratory neuronal network involved in the observed response.Under basal conditions, we observed increased minute ventilation in Kcnk3-deficient rats, which was associated with increased c-Fos positive cells in the ventrolateral region of the medulla oblongata. Kcnk3-deficient rats show an increase in ventilatory response to hypoxia without changes in response to hypercapnia. In Kcnk3-deficient rats, linked to an increased hypoxia response, we observed a greater increase in c-Fos-positive cells in the first central relay of peripheral chemoreceptors and Raphe Obscurus. This study reports that KCNK3/TASK-1 deficiency in rats induces an inadequate peripheral chemoreflex, alternating respiratory rhythmogenesis, and hypoxic chemoreflex.

3.
Front Physiol ; 14: 1205924, 2023.
Article in English | MEDLINE | ID: mdl-37383147

ABSTRACT

Some patients with idiopathic pulmonary fibrosis present impaired ventilatory variables characterised by low forced vital capacity values associated with an increase in respiratory rate and a decrease in tidal volume which could be related to the increased pulmonary stiffness. The lung stiffness observed in pulmonary fibrosis may also have an effect on the functioning of the brainstem respiratory neural network, which could ultimately reinforce or accentuate ventilatory alterations. To this end, we sought to uncover the consequences of pulmonary fibrosis on ventilatory variables and how the modification of pulmonary rigidity could influence the functioning of the respiratory neuronal network. In a mouse model of pulmonary fibrosis obtained by 6 repeated intratracheal instillations of bleomycin (BLM), we first observed an increase in minute ventilation characterised by an increase in respiratory rate and tidal volume, a desaturation and a decrease in lung compliance. The changes in these ventilatory variables were correlated with the severity of the lung injury. The impact of lung fibrosis was also evaluated on the functioning of the medullary areas involved in the elaboration of the central respiratory drive. Thus, BLM-induced pulmonary fibrosis led to a change in the long-term activity of the medullary neuronal respiratory network, especially at the level of the nucleus of the solitary tract, the first central relay of the peripheral afferents, and the Pre-Bötzinger complex, the inspiratory rhythm generator. Our results showed that pulmonary fibrosis induced modifications not only of pulmonary architecture but also of central control of the respiratory neural network.

5.
Cells ; 11(21)2022 10 26.
Article in English | MEDLINE | ID: mdl-36359778

ABSTRACT

RATIONALE: idiopathic pulmonary fibrosis (IPF) is the most severe form of fibrosing interstitial lung disease, characterized by progressive respiratory failure leading to death. IPF's natural history is heterogeneous, and its progression unpredictable. Most patients develop a progressive decline of respiratory function over years; some remain stable, but others present a fast-respiratory deterioration without identifiable cause, classified as acute exacerbation (AE). OBJECTIVES: to develop and characterize an experimental mice model of lung fibrosis AE, mimicking IPF-AE at the functional, histopathological, cellular and molecular levels. METHODS: we established in C57BL/6 male mice a chronic pulmonary fibrosis using a repetitive low-dose bleomycin (BLM) intratracheal (IT) instillation regimen (four instillations of BLM every 2 weeks), followed by two IT instillations of a simple or double-dose BLM challenge to induce AE. Clinical follow-up and histological and molecular analyses were done for fibrotic and inflammatory lung remodeling analysis. MEASUREMENTS AND MAIN RESULTS: as compared with a low-dose BLM regimen, this AE model induced a late burst of animal mortality, worsened lung fibrosis and remodeling, and superadded histopathological features as observed in humans IPF-AE. This was associated with stronger inflammation, increased macrophage infiltration of lung tissue and increased levels of pro-inflammatory cytokines in lung homogenates. Finally, it induced in the remodeled lung a diffuse expression of hypoxia-inducible factor 1α, a hallmark of tissular hypoxia response and a major player in the progression of IPF. CONCLUSION: this new model is a promising model of AE in chronic pulmonary fibrosis that could be relevant to mimic IPF-AE in preclinical trials.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Mice , Male , Animals , Mice, Inbred C57BL , Idiopathic Pulmonary Fibrosis/metabolism , Bleomycin/pharmacology , Lung/pathology , Hypoxia/pathology
6.
Am J Transplant ; 22(12): 2961-2970, 2022 12.
Article in English | MEDLINE | ID: mdl-35778956

ABSTRACT

Over the past 25 years, we have demonstrated the feasibility of airway bioengineering using stented aortic matrices experimentally then in a first-in-human trial (n = 13). The present TRITON-01 study analyzed all the patients who had airway replacement at our center to confirm that this innovative approach can be now used as usual care. For each patient, the following data were prospectively collected: postoperative mortality and morbidity, late airway complications, stent removal and status at last follow-up on November 2, 2021. From October 2009 to October 2021, 35 patients had airway replacement for malignant (n = 29) or benign (n = 6) lesions. The 30-day postoperative mortality and morbidity rates were 2.9% (n = 1/35) and 22.9% (n = 8/35) respectively. At a median follow-up of 29.5 months (range 1-133 months), 27 patients were alive. There have been no deaths directly related to the implanted bioprosthesis. Eighteen patients (52.9%) had stent-related granulomas requiring a bronchoscopic treatment. Ten among 35 patients (28.6%) achieved a stent free survival. The actuarial 2- and 5-year survival rates (Kaplan-Meier estimates) were respectively 88% and 75%. The TRITON-01 study confirmed that airway replacement using stented aortic matrices can be proposed as usual care at our center. Clinicaltrials.gov Identifier: NCT04263129.


Subject(s)
Aortic Valve Stenosis , Bioprosthesis , Heart Valve Prosthesis , Adult , Humans , Aortic Valve Stenosis/surgery , Follow-Up Studies , Postoperative Complications , Stents , Treatment Outcome
8.
Life (Basel) ; 11(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34575121

ABSTRACT

BACKGROUND: High prevalence of obstructive sleep apnea (OSA) is reported in incident and prevalent forms of idiopathic pulmonary fibrosis (IPF). We previously reported that Intermittent Hypoxia (IH), the major pathogenic element of OSA, worsens experimental lung fibrosis. Our objective was to investigate the molecular mechanisms involved. METHODS: Impact of IH was evaluated on C57BL/6J mice developing lung fibrosis after intratracheal instillation of Bleomycin (BLM). Mice were Pre-exposed 14 days to IH before induction of lung fibrosis or Co-challenged with IH and BLM for 14 days. Weight loss and survival were daily monitored. After experimentations, lungs were sampled for histology, and protein and RNA were extracted. RESULTS: Co-challenge or Pre-exposure of IH and BLM induced weight loss, increased tissue injury and collagen deposition, and pro-fibrotic markers. Major worsening effects of IH exposure on lung fibrosis were observed when mice were Pre-exposed to IH before developing lung fibrosis with a strong increase in sXBP1 and ATF6N ER stress markers. CONCLUSION: Our results showed that IH exacerbates BLM-induced lung fibrosis more markedly when IH precedes lung fibrosis induction, and that this is associated with an enhancement of ER stress markers.

9.
Front Immunol ; 12: 719009, 2021.
Article in English | MEDLINE | ID: mdl-34456926

ABSTRACT

Background: Macrophages are pivotal cells in sarcoidosis. Monocytes-derived (MD) macrophages have recently been demonstrated to play a major role especially in pulmonary sarcoidosis. From inflammatory tissues to granulomas, they may be exposed to low oxygen tension environments. As hypoxia impact on sarcoidosis immune cells has never been addressed, we designed the present study to investigate MD-macrophages from sarcoidosis patients in this context. We hypothesized that hypoxia may induce functional changes on MD-macrophages which could have a potential impact on the course of sarcoidosis. Methods: We studied MD-macrophages, from high active sarcoidosis (AS) (n=26), low active or inactive sarcoidosis (IS) (n=24) and healthy controls (n=34) exposed 24 hours to normoxia (21% O2) or hypoxia (1.5% O2). Different macrophage functions were explored: hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-κB) activation, cytokines secretion, phagocytosis, CD80/CD86/HLA-DR expression, profibrotic response. Results: We observed that hypoxia, with a significantly more pronounced effect in AS compared with controls and IS, increased the HIF-1α trans-activity, promoted a proinflammatory response (TNFα, IL1ß) without activating NF-κB pathway and a profibrotic response (TGFß1, PDGF-BB) with PAI-1 secretion associated with human lung fibroblast migration inhibition. These results were confirmed by immunodetection of HIF-1α and PAI-1 in granulomas observed in pulmonary biopsies from patients with sarcoidosis. Hypoxia also decreased the expression of CD80/CD86 and HLA-DR on MD-macrophages in the three groups while it did not impair phagocytosis and the expression of CD36 expression on cells in AS and IS at variance with controls. Conclusions: Hypoxia had a significant impact on MD-macrophages from sarcoidosis patients, with the strongest effect seen in patients with high active disease. Therefore, hypoxia could play a significant role in sarcoidosis pathogenesis by increasing the macrophage proinflammatory response, maintaining phagocytosis and reducing antigen presentation, leading to a deficient T cell response. In addition, hypoxia could favor fibrosis by promoting profibrotic cytokines response and by sequestering fibroblasts in the vicinity of granulomas.


Subject(s)
Disease Susceptibility , Hypoxia/metabolism , Macrophages/immunology , Macrophages/metabolism , Sarcoidosis/etiology , Sarcoidosis/metabolism , Biomarkers , Case-Control Studies , Cells, Cultured , Cytokines/metabolism , Fibroblasts/metabolism , Fibrosis , Granuloma/genetics , Granuloma/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Phagocytosis , Phenotype , Sarcoidosis/pathology , Sarcoidosis, Pulmonary/etiology , Sarcoidosis, Pulmonary/metabolism , Sarcoidosis, Pulmonary/pathology
10.
Front Med (Lausanne) ; 8: 713698, 2021.
Article in English | MEDLINE | ID: mdl-34422868

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) is characterized by a male predominance. The aim of the study was to explore gender differences in a well-designed French multicentre prospective IPF cohort (COhorte FIbrose, COFI) with a 5-year follow-up. Methods: Between 2007 and 2010, 236 patients with incident IPF were included in COFI. Gender characteristics were compared using a t-test, Chi-squared test and ANOVA, as appropriate. Survival analyses were performed. Results: Fifty-one (22%) females and 185 (78%) males with an average age at diagnosis of 70.1 ± 9.20 and 67.4 ± 10.9 years, respectively, were included in the cohort. Women were significantly less exposed to tobacco smoke [never n = 32 (62.7%) vs. n = 39 (21.1%), p < 0.001] and to occupational exposure [n = 7 (13.7%) vs. n = 63 (34.1%), p = 0.012]. Baseline forced vital capacity, % of predicted (FVC%) was significantly better in women compare to men (83.0% ± 25.0 v. 75.4% ± 18.7 p = 0.046). At presentation honeycombing and emphysema on CT scan were less common in women [n = 40 (78.4%) vs. n = 167 (90.3%) p = 0.041] and [n = 6 (11.8%) vs. n = 48 (25.9%) p = 0.029], respectively. During follow-up fewer women were transplanted compared to men [n = 1 (1.96%) vs. n = 20 (10.8%) p = 0.039]. Medians of survival were comparable by gender [31 months (CI 95%: 28-40) vs. 40 months (CI 95%: 33-72) p = 0.2]. After adjusting for age and FVC at inclusion, being a woman was not associated to a better survival. Conclusions: Women appear to have less advanced disease at diagnosis, maybe due to less exposure history compare to men. Disease progression and overall survival remains comparable regardless gender, but women have less access to lung transplantation.

11.
Front Physiol ; 12: 578708, 2021.
Article in English | MEDLINE | ID: mdl-33912067

ABSTRACT

Background: A computational proteomic analysis suggested that SARS-CoV-2 might bind to hemoglobin (Hb). The authors hypothesized that this phenomenon could result in a decreased oxygen (O2) binding and lead to hemolytic anemia as well. The aim of this work was to investigate whether the affinity of Hb for O2 was altered during COVID-19. Methods: In this retrospective, observational, single-center study, the blood gas analyses of 100 COVID-19 patients were compared to those of 100 non-COVID-19 patients. Fifty-five patients with carboxyhemoglobin (HbCO) ≥8% and 30 with sickle cell disease (SCD) were also included ("positive controls" with abnormal Hb affinity). P50 was corrected for body temperature, pH, and PCO2. Results: Patients did not differ statistically for age or sex ratio in COVID-19 and non-COVID-19 groups. Median P50 at baseline was 26 mmHg [25.2-26.8] vs. 25.9 mmHg [24-27.3], respectively (p = 0.42). As expected, P50 was 22.5 mmHg [21.6-23.8] in the high HbCO group and 29.3 mmHg [27-31.5] in the SCD group (p < 0.0001). Whatever the disease severity, samples from COVID-19 to non-COVID-19 groups were distributed on the standard O2-Hb dissociation curve. When considering the time-course of P50 between days 1 and 18 in both groups, no significant difference was observed. Median Hb concentration at baseline was 14 g.dl-1 [12.6-15.2] in the COVID-19 group vs. 13.2 g.dl-1 [11.4-14.7] in the non-COVID-19 group (p = 0.006). Among the 24 COVID-19 patients displaying anemia, none of them exhibited obvious biological hemolysis. Conclusion: There was no biological argument to support the hypothesis that SARS-CoV-2 could alter O2 binding to Hb.

12.
Respir Med ; 169: 105997, 2020 08.
Article in English | MEDLINE | ID: mdl-32442108

ABSTRACT

INTRODUCTION: Pulmonary fibrosing sarcoidosis is associated with increased mortality. This study was aimed to explore the prognosis value of a panel of parameters for predicting mortality. METHODS: This retrospective study included 216 patients with confirmed stage 4 pulmonary sarcoidosis. Stage 4 diagnosis date served as baseline. The following information was systematically present at baseline: epidemiological characteristics; treatments; pulmonary function; composite physiologic index (CPI); systolic pulmonary artery pressure at echocardiography; pulmonary fibrosis extent, main pulmonary artery/ascending aorta diameters ratio (MPAD/AAD) and MPAD/body surface area (BSA) measured and calculated using computed tomography, Walsh's algorithm based on CPI, lung fibrosis extent and MPAD/AAD ratio, and modified Walsh's algorithm with MPAD/BSA replacing MPAD/AAD allowed to estimate good or bad prognosis profiles. The primary outcome of the study was all cause mortality and lung transplantation. The value of baseline parameters was tested as predictors of mortality using univariate and multivariate analyses. RESULTS: Median follow-up was 105 months. There were 41 deaths and 5 transplantations. At multivariate analysis, survival was independently predicted by several parameters including CPI, lung fibrosis extent, pulmonary hypertension at echography or MPAD/BSA ratio, Walsh's algorithm, and geographic origin. The modified Walsh's algorithm was most highly predictive. CONCLUSION: Survival was best predicted by geographic origin, lung fibrosis extent, PH at echography or MPAD/BSA ratio, as well as by various scores among them the modified Walsh's algorithm had very high predictive value thanks to MPAD/BSA ratio which accurately predicted mortality.


Subject(s)
Algorithms , Pulmonary Fibrosis/mortality , Sarcoidosis, Pulmonary/mortality , Aorta/pathology , Body Surface Area , Follow-Up Studies , Hypertension, Pulmonary , Predictive Value of Tests , Prognosis , Pulmonary Artery/pathology , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/pathology , Retrospective Studies , Sarcoidosis, Pulmonary/complications , Sarcoidosis, Pulmonary/diagnosis , Sarcoidosis, Pulmonary/pathology , Severity of Illness Index , Tomography, X-Ray Computed
13.
Int J Mol Sci ; 20(6)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875855

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal interstitial lung disease of unknown origin. Alveolar epithelial cells (AECs) play an important role in the fibrotic process as they undergo sustained endoplasmic reticulum (ER) stress, and may acquire a mesenchymal phenotype through epithelial-to-mesenchymal transition (EMT), two phenomena that could be induced by localized alveolar hypoxia. Here we investigated the potential links between hypoxia, ER stress and EMT in AECs. METHODS: ER stress and EMT markers were assessed by immunohistochemistry, western blot and qPCR analysis, both in vivo in rat lungs exposed to normoxia or hypoxia (equivalent to 8% O2) for 48 h, and in vitro in primary rat AECs exposed to normoxia or hypoxia (1.5% O2) for 2⁻6 days. RESULTS: Hypoxia induced expression of mesenchymal markers, pro-EMT transcription factors, and the activation of ER stress markers both in vivo in rat lungs, and in vitro in AECs. In vitro, pharmacological inhibition of ER stress by 4-PBA limited hypoxia-induced EMT. Calcium chelation or hypoxia-inducible factor (HIF) inhibition also prevented EMT induction under hypoxic condition. CONCLUSIONS: Hypoxia and intracellular calcium are both involved in EMT induction of AECs, mainly through the activation of ER stress and HIF signaling pathways.


Subject(s)
Alveolar Epithelial Cells/cytology , Butylamines/pharmacology , Endoplasmic Reticulum Stress/drug effects , Transcription Factors/metabolism , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Animals , Calcium/metabolism , Calcium Chelating Agents/pharmacology , Cell Hypoxia/drug effects , Cells, Cultured , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Gene Expression Regulation/drug effects , Humans , Male , Rats , Rats, Sprague-Dawley
14.
Sci Rep ; 8(1): 17939, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30560874

ABSTRACT

Endoplasmic Reticulum (ER) stress of alveolar epithelial cells (AECs) is recognized as a key event of cell dysfunction in pulmonary fibrosis (PF). However, the mechanisms leading to AECs ER stress and ensuing unfolded protein response (UPR) pathways in idiopathic PF (IPF) remain unclear. We hypothesized that alveolar hypoxic microenvironment would generate ER stress and AECs apoptosis through the hypoxia-inducible factor-1α (HIF-1α). Combining ex vivo, in vivo and in vitro experiments, we investigated the effects of hypoxia on the UPR pathways and ER stress-mediated apoptosis, and consecutively the mechanisms linking hypoxia, HIF-1α, UPR and apoptosis. HIF-1α and the pro-apoptotic ER stress marker C/EBP homologous protein (CHOP) were co-expressed in hyperplastic AECs from bleomycin-treated mice and IPF lungs, not in controls. Hypoxic exposure of rat lungs or primary rat AECs induced HIF-1α, CHOP and apoptosis markers expression. In primary AECs, hypoxia activated UPR pathways. Pharmacological ER stress inhibitors and pharmacological inhibition or silencing of HIF-1α both prevented hypoxia-induced upregulation of CHOP and apoptosis. Interestingly, overexpression of HIF-1α in normoxic AECs increased UPR pathways transcription factors activities, and CHOP expression. These results indicate that hypoxia and HIF-1α can trigger ER stress and CHOP-mediated apoptosis in AECs, suggesting their potential contribution to the development of IPF.


Subject(s)
Alveolar Epithelial Cells/metabolism , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Idiopathic Pulmonary Fibrosis/etiology , Idiopathic Pulmonary Fibrosis/metabolism , Transcription Factor CHOP/metabolism , Aged , Alveolar Epithelial Cells/pathology , Animals , Apoptosis/genetics , Biopsy , Bleomycin/adverse effects , Disease Models, Animal , Female , Gene Expression , Humans , Hypoxia/genetics , Hypoxia/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Mice , Middle Aged , Rats , Transcription Factor CHOP/genetics , Unfolded Protein Response
15.
Stem Cell Rev Rep ; 14(6): 812-822, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30267203

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease characterized by fibroblast proliferation, extracellular matrix deposition, destruction of pulmonary alveolar architecture and vascular remodeling. Apart pirfenidone or nintendanib that only slow down the fibrotic process, there is no curative treatment other than lung transplantation. Because cell therapy approaches have been proposed in IPF, we hypothesized that injection of endothelial colony-forming cells (ECFCs), the vasculogenic subtype of endothelial progenitor cells, could modulate fibrosis in a Nude mouse model of bleomycin induced-pulmonary fibrosis. Mice were injected with ECFCs isolated from cord blood and from peripheral blood of adult IPF patients at two time-points: during the development of the fibrosis or once the fibrosis was constituted. We assessed morbidity, weight variation, collagen deposition, lung imaging by microCT, Fulton score and microvascular density. Neither ECFCs isolated from cord blood nor from IPF patients were able to modulate fibrosis or vascular density during fibrogenesis or when fibrosis was constituted. These findings indicate that human ECFCs do not promote an adaptive regenerative response in the lung upon fibrosis or angiogenic process in the setting of bleomycin-induced pulmonary fibrosis in Nude mice.


Subject(s)
Bleomycin/adverse effects , Endothelial Progenitor Cells/metabolism , Lung , Pulmonary Fibrosis , X-Ray Microtomography , Animals , Bleomycin/pharmacology , Disease Models, Animal , Endothelial Progenitor Cells/pathology , Humans , Lung/diagnostic imaging , Lung/metabolism , Mice , Mice, Nude , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/metabolism
16.
Front Physiol ; 9: 788, 2018.
Article in English | MEDLINE | ID: mdl-29988603

ABSTRACT

We aimed to delineate sex-based differences in neuroplasticity that may be associated with previously reported sex-based differences in physiological alterations caused by repetitive succession of hypoxemia-reoxygenation encountered during obstructive sleep apnea (OSA). We examined long-term changes in the activity of brainstem and diencephalic cardiorespiratory neuronal populations induced by chronic intermittent hypoxia (CIH) in male and female mice by analyzing Fosb expression. Whereas the overall baseline and CIH-induced Fosb expression in females was higher than in males, possibly reflecting different neuroplastic dynamics, in contrast, structures responded to CIH by Fosb upregulation in males only. There was a sex-based difference at the level of the rostral ventrolateral reticular nucleus of the medulla, with an increase in the number of FOSB/ΔFOSB-positive cells induced by CIH in males but not females. This structure contains neurons that generate the sympathetic tone and which are involved in CIH-induced sustained hypertension during waking hours. We suggest that the sex-based difference in neuroplasticity of this structure contributes to the reported sex-based difference in CIH-induced hypertension. Moreover, we highlighted a sex-based dimorphic phenomenon in serotoninergic systems induced by CIH, with increased serotoninergic immunoreactivity in the hypoglossal nucleus and a decreased number of serotoninergic cells in the dorsal raphe nucleus in male but not female mice. We suggest that this dimorphism in the neuroplasticity of serotoninergic systems predisposes males to a greater alteration of neuronal control of the upper respiratory tract associated with the greater collapsibility of upper airways described in male OSA subjects.

17.
Oxid Med Cell Longev ; 2018: 1240192, 2018.
Article in English | MEDLINE | ID: mdl-29725493

ABSTRACT

BACKGROUND: Severe obstructive sleep apnea (OSA) with chronic intermittent hypoxia (IH) is common in idiopathic pulmonary fibrosis (IPF). Here, we evaluated the impact of IH on bleomycin- (BLM-) induced pulmonary fibrosis in mice. METHODS: C57BL/6J mice received intratracheal BLM or saline and were exposed to IH (40 cycles/hour; FiO2 nadir: 6%; 8 hours/day) or intermittent air (IA). In the four experimental groups, we evaluated (i) survival; (ii) alveolar inflammation, pulmonary edema, lung oxidative stress, and antioxidant enzymes; (iii) lung cell apoptosis; and (iv) pulmonary fibrosis. RESULTS: Survival at day 21 was lower in the BLM-IH group (p < 0.05). Pulmonary fibrosis was more severe at day 21 in BLM-IH mice, as assessed by lung collagen content (p = 0.02) and histology. At day 4, BLM-IH mice developed a more severe neutrophilic alveolitis, (p < 0.001). Lung oxidative stress was observed, and superoxide dismutase and glutathione peroxidase expression was decreased in BLM-IH mice (p < 0.05 versus BLM-IA group). At day 8, pulmonary edema was observed and lung cell apoptosis was increased in the BLM-IH group. CONCLUSION: These results show that exposure to chronic IH increases mortality, lung inflammation, and lung fibrosis in BLM-treated mice. This study raises the question of the worsening impact of severe OSA in IPF patients.


Subject(s)
Bleomycin/adverse effects , Lung Injury/etiology , Sleep Apnea, Obstructive/complications , Animals , Cell Hypoxia , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
18.
Respir Res ; 19(1): 44, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29554915

ABSTRACT

BACKGROUND: Sarcoidosis is a systemic disease characterized by the formation of immune granulomas in various organs, mainly the lungs and the lymphatic system. Exaggerated granulomatous reaction might be triggered in response to unidentified antigens in individuals with genetic susceptibility. The present study aimed to determine the genetic variants implicated in a familial case of sarcoidosis. METHODS: Sarcoidosis presentation and history, NOD2 profile, NF-κB and cytokine production in blood monocytes/macrophages were evaluated in individuals from a family with late appearance of sarcoidosis. RESULTS: In the present study, we report a case of familial sarcoidosis with typical thoracic sarcoidosis and carrying the NOD2 2722G > C variant. This variant is associated with the presence of three additional SNPs for the IL17RA, KALRN and EPHA2 genes, which discriminate patients expressing the disease from others. Despite a decrease in NF-κB activity, IL-8 and TNF-A mRNA levels were increased at baseline and in stimulated conditions. CONCLUSIONS: Combination of polymorphisms in the NOD2, IL17RA, EPHA2 and KALRN genes could play a significant role in the development of sarcoidosis by maintaining a chronic pro-inflammatory status in macrophages.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Nod2 Signaling Adaptor Protein/genetics , Sarcoidosis/diagnosis , Sarcoidosis/genetics , Aged, 80 and over , Family , Female , Humans , Male , Middle Aged , Pedigree
19.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L360-L371, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29167125

ABSTRACT

Distal lung diseases, such as pulmonary fibrosis or acute lung injury, are commonly associated with local alveolar hypoxia that may be deleterious through the stimulation of alveolar epithelial cell (AEC) apoptosis. In various murine models of alveolar injury, administration of allogenic human mesenchymal stem cells (hMSCs) exerts an overall protective paracrine effect, limiting lung inflammation and fibrosis. However, the precise mechanisms on lung cells themselves remain poorly understood. Here, we investigated whether hMSC-conditioned medium (hMSC-CM) would protect AECs from hypoxia-induced apoptosis and explored the mechanisms involved in this cytoprotective effect. Exposure of rat primary AECs to hypoxia (1.5% O2 for 24 h) resulted in hypoxia-inducible factor (HIF)-1α protein stabilization, partly dependent on reactive oxygen species (ROS) accumulation, and in a twofold increase in AEC apoptosis that was prevented by the HIF inhibitor 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole and the antioxidant drug N-acetyl cysteine. Incubation of AECs with hMSC-CM significantly reduced hypoxia-induced apoptosis. hMSC-CM decreased HIF-1α protein expression, as well as ROS accumulation through an increase in antioxidant enzyme activities. Expression of Bnip3 and CHOP, two proapoptotic targets of HIF-1α and ROS pathways, respectively, was suppressed by hMSC-CM, while Bcl-2 expression was restored. The paracrine protective effect of hMSC was partly dependent on keratinocyte growth factor and hepatocyte growth factor secretion, preventing ROS and HIF-1α accumulation.


Subject(s)
Alveolar Epithelial Cells/cytology , Apoptosis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/physiopathology , Mesenchymal Stem Cells/cytology , Pulmonary Alveoli/cytology , Reactive Oxygen Species/metabolism , Alveolar Epithelial Cells/physiology , Animals , Cells, Cultured , Humans , Male , Mesenchymal Stem Cells/physiology , Pulmonary Alveoli/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction
20.
Eur Respir J ; 49(6)2017 06.
Article in English | MEDLINE | ID: mdl-28619957

ABSTRACT

Chronic pulmonary aspergillosis (CPA) complicating sarcoidosis (SA) is associated with high mortality, and there is a lack of clarity regarding the relative contributions of SA or CPA.This was a retrospective single-centre study on CPA-SA.In total, 65 patients (44 men), aged 41.4±13.5 and 48.3±11.9 years at the time of SA and CPA diagnoses, respectively, were included between 1980 and 2015. Of these, 64 had fibrocystic SA, most often advanced, with composite physiological index (CPI) >40 (65% of patients) and pulmonary hypertension (PH) (31%), and 41 patients (63%) were treated for SA (corticosteroids or immunosuppressive drugs). Chronic cavitary pulmonary aspergillosis (CCPA) was the most frequent CPA pattern. Regarding treatment, 55 patients required long-term antifungals, 14 interventional radiology, 11 resection surgery and two transplantation. Nearly half of the patients (27; 41.5%) died (mean age 55.8 years); 73% of the patients achieved 5-year survival and 61% 10-year survival. Death most often resulted from advanced SA and rarely from haemoptysis. CPI, fibrosis extent and PH predicted survival. Comparison with paired healthy controls without CPA did not show any difference in survival, but a higher percentage of patients had high-risk mould exposure.CPA occurs in advanced pulmonary SA. CPA-SA is associated with high mortality due to the underlying advanced SA rather than to the CPA. CPI, fibrosis extent and PH best predict outcome.


Subject(s)
Antifungal Agents/therapeutic use , Glucocorticoids/therapeutic use , Immunosuppressive Agents/therapeutic use , Pneumonectomy , Pulmonary Aspergillosis , Sarcoidosis, Pulmonary , Adult , Female , France/epidemiology , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Lung Transplantation/statistics & numerical data , Male , Middle Aged , Outcome and Process Assessment, Health Care , Pneumonectomy/methods , Pneumonectomy/statistics & numerical data , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/physiopathology , Pulmonary Aspergillosis/therapy , Sarcoidosis, Pulmonary/complications , Sarcoidosis, Pulmonary/microbiology , Sarcoidosis, Pulmonary/mortality , Sarcoidosis, Pulmonary/therapy , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...