Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Chempluschem ; 85(6): 1210-1219, 2020 06.
Article in English | MEDLINE | ID: mdl-32515150

ABSTRACT

The development of a team-based approach to research-led transnational practical chemistry teaching is described in which a team of five Chinese students on an articulated transnational degree programme, supported by a team of academic and technical staff, carried out a study examining the structural chemistry of a series of manganese(III) salen complexes. A series of four crystallographically characterized manganese(III) salen complexes with ancillary carboxylate ligands are reported here. The carboxylate coordination modes range from the bridging syn-anti µ2 -κO : κO' mode observed in the predominant cyclohexanoate and isobutyrate species, to a capping terminal monodentate mode for the adamantanoate species, and an unusual mixture of bridging and terminal coordination modes observed in a second minor phase of the cyclohexanoate species. The variation on extended structures based on the weakly interacting aliphatic backbones may provide a useful basis for further structural studies.

2.
Nat Commun ; 8(1): 971, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042564

ABSTRACT

The real-time visualization of stochastic nucleation events at electrode surfaces is one of the most complex challenges in electrochemical phase formation. The early stages of metal deposition on foreign substrates are characterized by a highly dynamic process in which nanoparticles nucleate and dissolve prior to reaching a critical size for deposition and growth. Here, high-speed non-contact lateral molecular force microscopy employing vertically oriented probes is utilized to explore the evolution of hydration layers at electrode surfaces with the unprecedented spatiotemporal resolution, and extremely low probe-surface interaction forces required to avoid disruption or shielding the critical nucleus formation. To the best of our knowledge, stochastic nucleation events of nanoscale copper deposits are visualized in real time for the first time and a highly dynamic topographic environment prior to the formation of critical nuclei is unveiled, featuring formation/re-dissolution of nuclei, two-dimensional aggregation and nuclei growth.Electrochemical deposition is important for industrial processes however, tracking the early stages of metallic phase nucleation is challenging. Here, the authors visualize the birth and growth of metal nuclei at electrode surfaces in real time via high-speed non-contact lateral molecular force microscopy.

3.
Chemistry ; 21(36): 12694-701, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26201954

ABSTRACT

Oleylamine (OA) based "hot injection" colloidal synthesis offers a versatile approach to the synthesis of highly monodisperse metallic and multi-metallic alloyed nanostructures in the absence of potentially toxic and unstable phosphine compounds. For application in heterogeneous catalysis and electrocatalysis, the adsorbed OA species at the metal surfaces should be effectively removed without compromising the structure and composition of the nanostructures. Herein, we investigate the removal of OA from colloidal Pt nanoparticles through 1) "chemical methods" such as washing in acetic acid or ethanol, and ligand exchange with pyridine; and 2) thermal pre-treatment between 185 and 400 °C in air, H2 or Ar atmospheres. The electrochemical reactivity of Pt nanoparticles is acutely affected by the presence of surface organic impurities, making this material ideal for monitoring the effectiveness of OA removal. The results showed that thermal treatment in Ar at temperatures above 400 °C provides highly active particles, with reactivity comparable to the benchmark commercial catalyst, Pt/ETEK. The mechanism involved in thermal desorption of OA was also investigated by thermogravimetric analysis coupled to mass spectrometry (TGA-MS). Oxidation of HCOOH and adsorbed CO in acidic solution were used as test reactions to assess the Pt electrocatalytic activity.

4.
Chem Commun (Camb) ; 49(93): 10962-4, 2013 Dec 04.
Article in English | MEDLINE | ID: mdl-24131917

ABSTRACT

The faradaic efficiency of CO2 electroreduction is significantly affected by the thickness of Pd nanoshells on Au cores. The ratio of hydrogen evolution to CO2 reduction was determined by differential electrochemical mass spectrometry. Decreasing the Pd shell thickness from 10 to 1 nm leads to a twofold increase in faradaic efficiency.

5.
Langmuir ; 28(5): 2502-9, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22208500

ABSTRACT

For the first time a series of anionic surfactant ionic liquids (SAILs) has been synthesized based on organic surfactant anions and 1-butyl-3-methyl-imidazolium cations. These compounds are more environmentally friendly and chemically tunable as compared to other common ionic liquids. A detailed investigation of physicochemical properties highlights potential applications from battery design to reaction control, and studies into aqueous aggregation behavior, as well as structuring in pure ILs, point to possible uses in electrochemistry.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Surface-Active Agents/chemistry , Anions/chemical synthesis , Anions/chemistry , Cations/chemistry , Ionic Liquids/chemical synthesis , Molecular Structure , Surface-Active Agents/chemical synthesis
6.
Chem Commun (Camb) ; 47(27): 7656-8, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21647528

ABSTRACT

The suitability of insulating highly crystalline diamond particles as support for Pd based electrocatalysts is explored for the first time by evaluating the electrochemical stripping of CO and oxidation of formic acid in acid solutions.

7.
Langmuir ; 26(12): 10334-40, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20462234

ABSTRACT

A kinetic study of the electroless deposition of copper on gold, using dimethylamine borane (DMAB) as a reducing agent, has been carried out. The copper deposition rate in the electroless bath was determined to be 50 nm min(-1), through electrochemical stripping of the copper deposits as well as from direct measurements of the film thickness using atomic force microscopy (AFM). Comparison with a galvanic cell setup, where the two half-reactions were physically separated, yielded a lower deposition rate of 30 nm min(-1). An important kinetic effect of the surface on the oxidation of the reducing agent, and thus on the overall process, was therefore revealed. The efficiency of the process was measured over time, revealing the contribution of side reactions in the cathodic half-cell, particularly during the initial stages of the electroless process.

SELECTION OF CITATIONS
SEARCH DETAIL